

gpuFI-4: A Microarchitecture-Level Framework for
Assessing the Cross-Layer Resilience of Nvidia GPUs

Dimitris Sartzetakis George Papadimitriou Dimitris Gizopoulos
Department of Informatics and Telecommunications

University of Athens, Greece
{sartzet | georgepap | dgizop}@di.uoa.gr

Abstract—Pre-silicon reliability evaluation of processors is

usually performed at the microarchitecture or at the software
level. Recent studies on CPUs have, however, shown that soft-
ware level approaches can mislead the soft error vulnerability
assessment process and drive designers towards wrong error
protection decisions. To avoid such pitfalls in the GPUs domain,
the availability of microarchitecture level reliability assessment
tools is of paramount importance. Although there are several
publicly available frameworks for the reliability assessment of
GPUs, they only operate at the software level, and do not consid-
er the microarchitecture. This paper aims at accurate microar-
chitecture level GPU soft error vulnerability assessment. We
introduce gpuFI-4: a detailed microarchitecture-level fault injec-
tion framework to assess the cross-layer vulnerability of hard-
ware structures and entire GPU chips for single and multiple bit
faults, built on top of the state-of-the-art simulator GPGPU-Sim
4.0. We employ gpuFI-4 for fault injection of soft errors on
CUDA-enabled Nvidia GPU architectures. The target hardware
structures that our framework analyzes are the register file, the
shared memory, the L1 data and texture caches and the L2
cache, altogether accounting for tens of MBs of on-chip GPU
storage. We showcase the features of the tool reporting the vul-
nerability of three Nvidia GPU chip models: two different mod-
ern GPU architectures – RTX 2060 (Turing) and Quadro GV100
(Volta) – and an older generation – GTX Titan (Kepler), for both
single-bit and triple-bit fault injections and for twelve different
CUDA benchmarks that are simulated on the actual physical
instruction set (SASS). Our experiments report the Architectural
Vulnerability Factor (AVF) of the GPU chips (which can be only
measured at the microarchitecture level) as well as their predict-
ed Failures in Time (FIT) rate when technology information is
incorporated in the assessment.

Index Terms—reliability; GPU; transient faults; microarchi-
tecture-level fault injection; silent data corruptions; crashes

I. INTRODUCTION
Silicon manufacturing advancements have established new

generations of digital devices with a wealth of transistors that
improve the performance and functionality. On the downside,
however, the ever-increasing rate of hardware faults in newer
technologies can jeopardize the aggressive evolution of CPUs,
GPUs, and other processing units. CPUs and GPUs have major
architectural differences but their reliable operation can be sim-
ilarly and significantly affected by transient faults (soft errors),
intermittent faults, and permanent faults (hard errors) [1] [2]

[3]. Such hardware faults can be caused by several different
phenomena related to radiation, process variation, wear-out,
aging, etc. [4]. Even though the sources of failure are well-
known, it is crucial to precisely evaluate their impact on mod-
ern CPU and GPU architectures across the full stack of hard-
ware and software.

The most comprehensive way to measure the vulnerability
of the entire system stack (cross-layer vulnerability) including
the microarchitecture, the architecture, and the software layers
(both user and kernel space) is to determine the Architectural
Vulnerability Factor (AVF) [5] of each individual microarchi-
tectural structure during end-to-end program execution [6].
AVF is the probability that a fault (bit flip) in a hardware
structure will result in an observable error at the application
output. AVF can be measured either using analytical methods
such as the Architecturally Correct Execution (ACE) analysis
[5] or using fault injection [7]. AVF measurements through
statistically significant fault injection provide useful insights
for the vulnerability across the entire system stack, but this
comes with the expense of long simulation runs. While AVF
has been initially proposed for the assessment of reliability in
CPUs, it has also been adapted to GPUs [8] [9] [10]. Although
several tools and methodologies have been reported in the lit-
erature for the evaluation of the vulnerability of CPUs at dif-
ferent layers of abstraction, from the microarchitecture all the
way to the software, vulnerability evaluation tools for GPUs
are either limited to the software level only [11] [12] [13] [14]
or do not support recent GPU architectures [15]. Among these
GUFI [15] is the only microarchitecture level framework for
GPUs reliability assessment, however, (a) it is incomplete
(many essential GPU hardware components are not consid-
ered), (b) it is limited to older GPU generations, (c) it supports
only single-bit faults, and (d) it is not publicly available.

Microarchitecture-level vulnerability assessment of GPUs
is very important during the early design stages and can help to
measure the benefits of different error protection techniques
against the overheads they incur on an initially unprotected
design. As a result, much effort must be devoted to effectively
measure a system's vulnerability as early as possible and
making appropriate design decisions for error protection. Early
decisions on protective mechanisms, on the other hand, are
difficult to make because critical factors are unknown at the
early phases of a system's design such as the final size of

hardware components and the diversity of workloads. As a
result, early reliability assessment using microarchitectural
simulators and the flexibility it offers for design space explora-
tion is of great importance before the late stages of chip design.

In this paper, we describe a comprehensive GPUs fault
injection framework built on top of the latest version of the
state-of-the-art cycle-level GPGPU-Sim 4.0 simulator [16], for
measuring the AVF of individual hardware structures of GPUs
as well as entire GPU chips. Unlike previous efforts [11] [12]
[13] [15], our proposed framework can evaluate modern GPU
architectures at the hardware level considering a large number
of important microarchitectural components, it can inject both
single and multi-bit faults and reports the complete cross-layer
AVF. Our framework is capable of injecting transient faults on
most of the important hardware components of modern Nvidia
GPUs: the register file, the shared memory, the local memory,
the L1 data/texture cache, and the L2 cache.

We make the following contributions:
1. We propose a new microarchitecture-level fault injec-

tion framework (gpuFI-4) for assessing the cross-layer
resilience of modern GPUs, which is built on top of the
well-known state-of-the-art GPGPU-Sim 4.0 microar-
chitectural simulator. gpuFI-4 consists of three mod-
ules: a fault masks generator, an injection campaign
controller and a parser of the logged information. It al-
lows extensive studies with single or multiple faults in-
jected in: (i) different bits of the same entry of a hard-
ware structure, (ii) different entries of a structure, (iii)
different hardware structures simultaneously, (iv) all
combinations of the above.

2. We report results for single-bit and triple-bit fault (to
report significant differences) on important microarchi-
tectural structures to demonstrate how our tool can
comprehensively assist design decisions for error pro-
tection of individual components unlike other related
frameworks in the literature that consider faults only at
the software layer (and thus cannot pinpoint the weak-
est hardware structures). Therefore, our injection
framework can serve many different reliability studies.

3. We showcase the effects of soft errors on three differ-
ent GPU generations (the most recent RTX 2060 of
Turing microarchitecture and Quadro GV100 of Volta
microarchitecture, and an older generation GTX Titan
of Kepler microarchitecture), for the important micro-
architectural components and for both single-bit and
triple-bit faults.

4. We finally present the predicted Failures in Time (FIT)
rate of the entire GPUs (failures per billion hours of
operation). By using FIT rates (which incorporate
technology failure rate information), we can further ex-
tend our analysis on the vulnerability of different GPU
generations. The FIT rate can be used to provide essen-
tial insights about the vulnerability trends among older
and newer GPU architectures for the same workloads.

II. BACKGROUND & RELATED WORK

A. Background
The Graphic Processing Unit (GPU) was initially designed

for real-time graphics. A modern GPU, however, is not only a
strong graphics processor, but also a general purpose accelera-
tor that focuses on parallel processing and high data
bandwidth. Given that the performance improvement of CPUs
has significantly slowed down over the last two decades, GPUs
have gained the interest of the industry for general-purpose
computing purposes when data parallelism is ample. GPUs
could become a very promising contender in high performance
computing with rapid increases in both the computational
power and the programmability.

Nvidia is one of the biggest GPU providers in the world
and its CUDA-capable GPUs are of great performance in the
field of GPU computing. GPUs contain streaming
multiprocessors (SM), each containing several Stream
Processors (SPs). The GPU has a global scheduler (Giga
Thread) for distributing the work to the SMs and a host
interface to the CPU. Different large memory spaces are
available within a GPU chip, having different latencies, storage
capacity and access methods. These memory spaces, from the
faster to the slower are: the register file (32,768 32-bit registers
per SM in Nvidia compute capability devices 2.X), the shared
memory/L1 cache (64 KB per SM), the L2 cache (768 KB) and
the global memory Graphic Double Data Rate (GDDR)
DRAM (1 – 6 GB) [17]. The number of the SMs, SPs and the
sizes of the memory spaces can be different from across
generations and usually get larger in newer generations.

The streaming processors within one streaming
multiprocessor share the constant cache, the texture cache and
the instruction unit. Each streaming processor has its own
register file for storing data that are frequently used. The
register file of each processor is a small on-chip memory that
has an extremely short access time. There is also a block
memory referred to as shared memory. This is designed for
communication across streaming processors and is
implemented on-chip with very low access latency.

A GPU has a local memory, a global memory, a shared
memory, a data cache, a constant cache, a texture cache, and
the registers. The sizes of these memory components vary
between different microarchitectures from a few kilobytes
(e.g., caches) to some gigabytes (e.g., global memory). The
total size of the supported memories that we used in our
experiments for RTX 2060, Quadro GV100 and GTX Titan are
shown in Table I. Each CUDA thread may access data from
them during its execution. Each thread has a private local
memory. The local memory space resides in the device
memory, so local memory accesses have the same high latency
and low bandwidth as the global memory accesses. Registers
are private to a streaming processor to store the most
frequently used data. Constant cache is designed to cache in the
constant memory. Data can be declared as constant if they will
not be changed during the execution of the program. Shared

memory is used to allow streaming processors to communicate.
All threads have access to the same global memory and is used
for communication between host CPU and GPU, since GPU
cannot access the main memory of the CPU. Data that will be
handled by the GPU must first be copied to global memory and
the results obtained from the GPU must be copied back to the
CPU memory with the appropriate API (i.e., cudaMemcpy).

B. GPGPU-sim Overview
GPGPU-Sim is a cycle-level simulator modeling contem-

porary Nvidia GPUs running GPU computing workloads writ-
ten in CUDA or OpenCL. The simulator is capable of running
either Parallel Thread Execution assembly (PTX) or SASS
assembly. The earlier versions of the simulator supported only
PTX executions but since PTX is only a virtual ISA (Instruc-
tion Set Architecture) and not the actual binary code that runs
on the hardware this was a major limitation of the previous
versions. In order to lift the limitation, the developers of
GPGPU-Sim decided to extend PTX with the required features
to provide a one-to-one mapping to SASS. PTX along with the
extensions is called PTXPlus in GPGPU-Sim terminology.

The GPU architecture that is modeled by GPGPU-Sim is
composed of Single Instruction Multiple Thread (SIMT) cores
connected via an on-chip interconnection network to memory
partitions that interface to graphics GDDR DRAM. An SIMT
core models a highly multithreaded pipelined SIMD processor
roughly equivalent to what Nvidia calls a Streaming Multipro-
cessor (SM) or what AMD calls a Compute Unit (CU). The
SIMT Cores are grouped into SIMT Core Clusters. The SIMT
Cores in a SIMT Core Cluster share a common port to the in-
terconnection network. A Stream Processor (SP) or a CUDA
Core would correspond to a lane within an ALU pipeline in the
SIMT core.

GPGPU-Sim 4.0 supports the various memory spaces as
visible in PTX. Each SIMT core has 4 different on-chip level 1
memories: shared memory, data cache, constant cache, and
texture cache. Table II shows which on chip memories service
which type of memory access. Regarding the memory system
in GPGPU-Sim 4.0, it is modelled by a set of memory
partitions. Each memory partition contains an L2 cache bank, a
DRAM access scheduler and the off-chip DRAM channel. The
L2 cache (when enabled) services the incoming texture and
(when configured to do so) non-texture memory requests. For
our analysis L2 cache is configured to service all memory re-

quests. The reader is referred to [16] for a comprehensive
overview of the GPGPU-Sim microarchitecture.

C. Related Work
The reliability of GPU architectures has been studied

recently, with the starting point of the faults being either at the
hardware or at the software. GUFI [15] is an older
microarchitecture-level fault injection framework which was
built on top of GPGPU-Sim [16]. Unlike GUFI which uses the
obsolete GPGPU-Sim 3.0, our gpuFI-4 tool is built on top of
the latest simulator version 4.0. Another main difference is that
our framework studies transient faults on more crucial
hardware components, and thus, our experiments report meas-
urements on a significantly larger area of a GPU silicon than
GUFI (18.5MB and 47MB in total for RTX 2060 and Quadro
GV100, respectively). Moreover, by using the latest version of
the simulator we are capable of testing the most modern GPU
architectures as well (GPGPU-Sim 3.0 (partially) supports up
to Kepler architecture, while GPGPU-Sim 4.0 supports up to
Ampere architecture). Other reliability evaluation approaches
that employ microarchitectural simulators like GPGPU-Sim
and Multi2sim [18] are also available, although they both
measure the Architectural Vulnerability Factor (AVF) of
hardware structures using the Architectural Correct Execution
(ACE) analysis [8] [10] [19] and not through statistically sig-
nificant fault injections. As a result, such approaches come
with the inherent overestimation of the AVF of the
microprocessor structures [6] [20] [21] [22] and cannot provide
detailed fault effect classifications (output corruptions vs.
crashes for example), which is what our injector does.
Software-level fault injections in real Nvidia GPUs have also
been studied with tools like NVBitFI [11], SASSIFI [23],
GPU-Qin [14], and LLFI-GPU [24]; these tools only focus on
the program resilience and do not deliver AVF measurements
as in our analysis which allows injection of faults in the actual
hardware structures. Table III summarizes the fault injection
frameworks in both software and microarchitecture level,
showing the major limitations of the previously published
tools.

III. GPUFI-4: A MICROARCHITECTURE-LEVEL FRAMEWORK
FOR ASSESSING THE CROSS-LAYER RESILIENCE OF GPUS

A. Overview
gpuFI-4 is a complete and extensible framework for relia-

bility evaluation of Nvidia GPU architectures that runs on top
of a well-known simulator of GPUs architectures: GPGPU-Sim
4.0. gpuFI-4 considers transient fault injection campaigns on

TABLE I. MEMORY STRUCTURES SIZES ACROSS GENERATIONS.

 RTX 2060
(#SMs: 30)

Quadro GV100
(#SMs: 80)

GTX Titan
(#SMs: 14)

Register File 7.5 MB 20 MB 3.5 MB
Shared Memory 1.875 MB 7.5 MB 672 KB

L1 data cache 1.98 MB 2.64 MB N/A
L1 texture cache 3.96 MB 10.56 MB 709.38 KB

L1 instruction cache 3.96 MB 10.56 MB 59.08 KB
L1 constant cache 2.08 MB 5.56 MB 248.92 KB

L2 cache 3.17 MB 6.33 MB 1.58 MB

TABLE II. CUDA SUPPORTED MEMORY SPACES IN GPGPU-SIM.
Core Memory PTX Accesses

Shared memory (R/W) shared memory accesses only
Constant cache (Read Only) Constant and parameter memory
Texture cache (Read Only) Texture accesses only
Data cache (R/W - evict-on-

write for global memory,
writeback for local memory)

Global and Local memory
accesses

PTX or SASS mode, using single or multiple bit-flips during
the execution of an application as explained in Table IV for
each hardware component. The fault injection campaign in a
hardware component can be set either for a user-defined kernel
invocation or the whole application. We focused our study on
CUDA applications running on SASS mode and using single
and multiple bit-flips per kernel injection campaigns.

gpuFI-4 consists of two parts: a back-end and a front-end.
The back-end is the actual implementation of the fault injec-
tion. It has been developed on top of GPGPU-Sim 4.0 and sev-
eral input parameters have been created for this purpose which
are passed through the gpgpusim.config configuration file to
the simulator. The front-end part is a bash script, which initial-
izes the newly created parameters, executes the campaigns, and
collects the results. The following subsections explain the
frontend part and what steps should be followed until the exe-
cution of the injection campaigns. The backend implementa-
tion is discussed in the Section IV.

B. CUDA application preparation
gpuFI-4 relies its evaluation process on the printed message

of a CUDA application which states whether it succeeded or
failed. As a result, the applications should be slightly modified
to compare the results of the GPU part execution with either a
predefined result file (based on a fault-free execution) or the
results that come from the CPU “golden” reference execution
and print a custom message in the standard output accordingly.
We employ the predefined result file in our implementation for
faster execution of our experiments.

C. Profiling and campaign preparation
The bash script of the front-end requires several parameters

to be configured before the injection campaigns are performed.
We can classify these parameters into four abstract groups: (1)
the first group contains one-time parameters, and it is called
one time, (2) the second group contains parameters that need to
be initialized once per GPGPU card and are necessary to define
values that describe some of the hardware structures; it is
called per GPGPU card and (3) in the third group, there are
parameters that need to be initialized every time we analyze the
vulnerability of a new CUDA application or single kernel; it is
called per kernel/application. (4) Parameters that belong to the
fourth group are responsible for executing different injection
campaigns; it is called per injection campaign parameters. For
the last group, per injection campaign, the values of the

parameters corresponding to a component that we are not
injecting faults will be ignored.

IV. IMPLEMENTATION
In this section we discuss the backend of the proposed

framework, and how gpuFI-4 is implemented on top of
GPGPU-Sim 4.0. First, we present the main technical chal-
lenges of the simulator that we had to overcome in order to
model the transient faults as they were injected on a real
GPGPU and then we will discuss how the actual fault injec-
tions are implemented on each supported hardware structure.

A. Technical challenges of GPGPU-Sim 4.0
One of the main challenges imposed by the simulator is that

it consists of three major modules which had to be synchro-
nized: the functional simulator, the performance simulator, and
the interconnection network simulator. Our framework is de-
veloped in the first two modules. The functional simulator is
responsible for executing the PTX or SASS kernels, while the
performance simulator is the one that simulates the timing be-
havior of a GPU. As a result, the task of injecting faults at a
hardware structure was a complex one as it had to communi-
cate information between these two modules. We use the per-
formance module to define the timing constraints of the inject-
ed faults, while the functional module is used to define the spa-
tial constraints.

Another challenge of GPGPU-Sim 4.0 is that, due to the
nature of a simulator, it does not have the actual hardware
structures in place or fully allocated at the beginning of kernel
execution. In that case, the implementation first had to identify
the necessary running elements (e.g., threads, CTAs – Com-
pute Thread Arrays, SIMT cores) to get access to the hardware
components on which we want to inject the transient faults.

The third and last major challenge is that the caches in
GPGPU-Sim 4.0 are holding only the tag value along with
some other information and not the actual data. The data are

TABLE III. RELATED RELIABILITY FRAMEWORKS AND COMPARISON.

 Layer GPGPU-sim
Version

Multi-bit
Support

of Target
Components

GPU Gen-
erations

SASSIFI [23] SW - - 2010-2014
NVBitFI [11] SW - - 2012-2020
GPU-Qin [14] SW - - Ν/Α
G-SEPM [13] SW - - Ν/Α

LLFI-GPU [24] SW - - 2012-2015
GUFI [15] uArch 3.0 2 2006-2011
This Work uArch 4.0 6 2006-2020

TABLE IV. GPUFI-4 TARGET HARDWARE STRUCTURES.
HW Component Support

Register File

• Single or multiple bit-flips in one or more registers
of a thread.

• Single or multiple bit-flips in one or more registers
of a warp. Meaning that every thread of the warp
will be affected with the same injections.

Shared Memory

• Single or multiple bit-flips in a shared memory of
one or more blocks. Shared memory in an Nvidia
GPU is private per block (CTA) and in that case, a
user can perform the same shared memory injec-
tions on multiple blocks.

L1 Data Cache

• Single or multiple bit-flips in the L1 data cache of
one or more SIMT cores. L1 cache in an Nvidia
GPU is private, per-SIMT core and in that case, a
user can inject the same errors on multiple L1 data
caches.

L1 Texture Cache • Same as L1 data cache.

L2 Cache • Single or multiple bit flips.

Local Memory
(off-chip)

• Single or multiple bit-flips in a local memory of a
thread or a warp. Local memory in an Nvidia GPU
is private memory per thread.

kept on different memory structures and the connection be-
tween the cache line and the data is known later on during
cache access. This made the fault injections harder to imple-
ment and we had to come up with several hooks during cache
access and recognize accordingly if the fault should be injected
or not on the actual arrays that hold the caches data.

B. Fault injection implementation
In this section, we discuss the procedure of a fault injection

on each supported hardware structure, which are the register
file, the local memory, the shared memory, the L1 data and
texture cache, and the L2 cache. The fault injection takes place
at a specific cycle of the application requested by the user.

1) Register File
Each thread on an Nvidia GPU uses a subset of the register

file and the simulator does not reserve the registers of an active
thread from a hardware structure nor does it make all the regis-
ters available from the beginning but it rather allocates them
dynamically during its execution. An active thread is a thread
that is created and is accessible from the simulator during the
application execution until its workload is completed. The tool
at a given cycle chooses a random active thread and injects the
transient fault at a random register of that thread among the
registers allocated to the thread. The ability to target a register,
which is not yet allocated from that thread, comes from the fact
that the register allocation policy per thread is deterministic
and such injections have no effect on the execution. The same
technique is used to inject faults on an entire warp but instead
of choosing a random thread, the implementation chooses a
random warp and applies the same transient faults on all the
threads of the warp. This way, the tool achieves randomized
fault injection with statistical significance (which of course
depends on the number of injections).

2) Local Memory
The same approach as the register file injections applies al-

so in local memory, but for the local memory the granularity is
by thread and not by registers.

3) Shared Memory
Each block of threads (CTA – Compute Thread Array) on

an Nvidia GPU uses its own instance of the shared memory
and the shared memories that are visible from the simulator are
the ones that their block is active. An active block is a block
that is created and accessible from the simulator during the
application execution until its workload is completed. The
framework at a given cycle chooses one, or multiple, if re-
quested, active blocks and it proceeds with the fault injections
on their assigned shared memory. If multiple blocks are re-
quested then the same fault injections will occur on each
shared memory.

4) L1 data / texture cache
The L1 data cache per SIMT core is private in an Nvidia

GPU. The tool at a given cycle first chooses a random SIMT
core among the SIMT cores that a user has defined as an input

parameter. Then the cache line of that core’s L1 data cache can
be retrieved based on the bit that we want to flip. That bit can
be either in the tag or in the data part of the cache line. In the
first case, we can easily inject the error (flip the bit) into the
tag. In the second case and only if the cache line is valid, then
we create a fault injection hook. This is because the connection
between the cache line and where the data lives is known upon
cache access. That hook is activated every time we have access
to the aforementioned cache line. When there is read access
then if there is a hit and the bit that we want to flip is between
the data bits, we perform the fault injection in the retrieved data
and if it’s a miss then we completely deactivate that hook since
the cache line is going to be replaced. When there is write ac-
cess, then the hook gets deactivated if it’s a hit. On a write
miss, we are not doing anything since the L1 data cache has
write no-allocate write miss policy [16]. For multiple bit-flip
injections the procedure is the same for each bit.

5) L2 cache
The same approach is applied as in the case of the L1 da-

ta/texture cache with the difference that the L2 cache is public
to all of the applications. Internally the simulator splits the L2
cache into banks where each bank is assigned in a memory
partition [16]. For that reason, the simulator creates an abstrac-
tion and treats the L2 cache as a single entity where the first N
lines of the cache belong to the first bank with zero identifica-
tion and so on. With that said, the range of the bits that we can
flip is within the total size of the L2 cache. An important thing
to note is that the injection hooks of that cache are working
only on local, global, and texture data and not for instruction
and constant data. This is due to some problems that appeared
with the instruction and constant data caching as explained
below.

C. Miscellaneous
1) L1 constant/instruction cache
These caches were not implemented for fault injection

campaigns and will be added in future version of our tool after
resolving some technical limitations. For the L1 constant
cache, during the development, we found out that the connec-
tion between a cache line and the corresponding data was im-
possible to locate, hence the hooks could not work properly in
this case. For the L1 constant cache, there is no connection
between a cache line and the corresponding data, and thus, the
hooks could not work properly in this case. Luckily, the issue
is propagated only to the performance part (constant cache
hits/miss statistics) and does not affect the execution of the
application. For the L1 instruction cache similar limitations
apply.

2) Cache line and tag
A cache line in general consists of the data bits and some

extra bits like tag/dirty/valid, bits for the replacement policy
and more. Since the simulator does not have a real hardware
structure for caches, this framework is capable of modeling an
abstract view of the cache row as if there were tag bits before

the data bits. This gives us the ability to have more accurate
results in our experiments. We do not take into account other
bits because we decided to make the implementation simpler,
and we believe that the impact on the results would be negligi-
ble because of their size. The fraction of those extra bits is very
small compared to the whole cache and so the probability of
injecting a transient fault is very low. Note that the tag length
that we were able to include consists of 57 bits.

V. METHODOLOGY & BENCHMARKS

A. Methodology
gpuFI-4 evaluates the Architectural Vulnerability Factor

(AVF) of each kernel and each hardware component. To
measure the Architectural Vulnerable Factor (AVFGPU) of an
Nvidia GPU chip during the execution of a CUDA application,
we first measure the AVF for each application’s kernel
(AVFkernel) independently, and then we compute their weighted
arithmetic mean using the kernel execution cycles as weights.
In the measurement of AVF we also take into consideration the
sizes of every hardware structure as we explain below.

The AVFkernel measurement exploits the features of gpuFI-
4, which supports fault injection in the GPU register file, the
local memory, the shared memory, the L1 data/texture cache,
and the L2 cache. It is calculated by dividing the sum of
products, where each product is between the structure failure
ratio (FRstructure) and its corresponding hardware structure size,
by the size of all the previous hardware structures combined.
The aforementioned structure failure ratio is calculated simply
by dividing the number of fault injection experiments on a
hardware component that results in any failure by the total
number of injected faults.

FRstructure = #"#$%&	()*+,&-.)/	%+#0-)1	&.	"#-%$2+
#3.&#%	"#$%&	()*+,&-.)/

 (1)

AVFkernel =
∑ "5!!	∈	{%&'()&('*} 	×	7-8+!

#3.&#%	7-8+
 (2)

wAVF =
∑ 9:"!!	∈	{,*'-*.} 	×	;<,%+/!

#3.&#%	,<,%+/	.=	#%%	#>>%-,#&-.)/
 (3)

One of the main drawbacks of modeling with GPGPU-sim

(also mentioned in [15]), is that each thread of a kernel con-
structs and accesses its own register file and doesn’t reserve a
set of registers from a real physical register file that would be
constructed once for each SM (this would have been a more
convenient model for reliability assessment). Moreover, in
GPGPU-sim each CTA that is assigned to an SM uses its own
instance of shared memory and doesn’t occupy a subset of a
unified shared memory within an SM (this would have been
also a better model for injections). To overcome these two
modeling issues of GPGPU-sim, in our analysis for the register
file and the shared memory, we define a derating factor for
each of these two structures: df_reg and df_smem. To estimate
the final AVF of the register file and the shared memory, we

must multiply each factor with the relative percentage of fail-
ures [15]. We take into consideration the dynamic alloca-
tion/deallocation of each thread of a kernel and as a result the
dynamic allocation/deallocation of CTAs. That means that the
number of running threads and CTAs in an SM are not fixed or
stay the same throughout the execution of a kernel. That being
said, for the running number of threads and CTAs in an SM,
we get their mean values instead.

The df_reg is an intuitive quantification of the fraction of a
GPU physical register file that we can target in a given cycle
during the execution of a given kernel (therefore the remaining
area of the register file in not vulnerable). It depends on:

• #REGS_PER_THREAD: the number of registers that
a thread uses during the execution of a kernel,

• #THREADS_MEAN: the mean number of running
threads in an SM during the execution of a given kernel,

• #REGFILE_SIZE_SM: the number of registers in the
register file of an SM.

df_reg = #5?@7_B?5_3C5?9D	E	#3C5?9D7_F?9G
#5?@"(H?_7(I?_7F

The df_smem is an intuitive quantification of the fraction of
shared memory that we can target in a given cycle during the
execution of a given kernel (therefore the remaining area of the
shared memory in not vulnerable). It depends on:

• #CTA_SMEM_SIZE: the size of shared memory that
is used by a CTA of a kernel,

• #CTAS_MEAN: the mean number of running CTAs in
an SM during the execution of a given kernel,

• #SMEM_SIZE: shared memory size in an SM in bits.

df_smem = #;39_7F?F_7(I?	E	#;397_F?9G
#7F?F_7(I?

B. Fault Effects & Benchmarks
The fault injection campaign can be easily executed by

simply running the bash script. The script eventually will go on
a loop (until it reaches #RUNS cycles), where each cycle will
modify the framework’s new parameters at gpgpusim.config
file before executing the application. Since our tool is
implemented on top of GPGPU-Sim 4.0, the steps of setting up
the backend are the same as setting up the GPGPU-Sim 4.0 and
can be found in [16].

After completion of every batch of fault injections, a parser
post-processes the output of the experiments one by one and
aggregates the results. The final results are printed when all the
batches have finished and the script quits. The parser classifies
the fault effects of each experiment as Masked, Silent Data
Corruption (SDC), Crash, Timeout, or Performance. Such fault
effects are used in several injection-based studies.

Masked: The application runs until the end and the result is
identical to that of a fault-free execution.

Silent Data Corruption (SDC): The behavior of an
application with these types of faults is the same as with
masked faults but the application’s result is incorrect. Such
faults are the more severe as they occur without any indication

that a fault has been recorded (an abnormal event such as an
exception, etc.).

Crash: In this case, an error is recorded and the application
reaches an abnormal state without the ability to recover.

Timeout: The simulation did not finish within a certain
amount of time, equal to two times the fault-free execution
time.

Additionally, we use the term “Performance” as a fault
effect which is nothing but a Masked fault effect, but the total
cycles of the application are different from the fault-free
execution. We do not consider the Performance fault effect in
our AVF results, since they do not affect functionality.

In the context of our reliability evaluation, we use a set of
12 different applications from Rodinia benchmark suite [25]
and from Nvidia CUDA SDK [26]. These benchmarks are: Hot
Spot (HS), K-Means (KM), Speckle Reducing Anisotropic Dif-
fusion v1 and v2 (SRAD1 and SRAD2), Lower Upper Decom-
position (LUD), Breadth-First Search (BFS), Pathfinder
(PATHF), Needleman-Wunsch (NW), Gaussian Elimination
(GE), Backpropagation (BP), Vector Addition (VA), Scalar
Product (SP).

VI. EXPERIMENTAL EVALUATION
In this section, we discuss how gpuFI-4 is used and we pre-

sent the results of an extensive reliability and performance
evaluation for all applications listed above.

A. Experimental Evaluation Methodology
To inject faults on a kernel, we consider all its invocations

together (i.e., all dynamic instances of a static kernel); other-
wise, it would be extremely time consuming to examine every
invocation individually. This was possible by creating the input
cycle file to match the cycles of all the invocations of the ker-
nel. We also had to provide as an input, the SIMT cores that all
the invocations use so we know which L1 caches we need to
target. In general, for every static kernel of an application we
performed an injection campaign on every supported hardware
structure. Every injection campaign (either for single-bit or
triple-bit faults) is performed using 3,000 application execu-
tions, in which either a single-bit or triple-bit are flipped on
each execution. This number comes from the formula of [7]
and results in a statistically significant number of fault injec-

tion with confidence level 99% and error margin less than 2%.
Table V shows the microarchitectural parameters of each Nvid-
ia card employed in the study.

There are some important aspects relevant to our
experiments worth mentioning at this point. Firstly, even
though commercial Nvidia GPU chips incorporate ECC
protection the GPGPU-Sim does not model it and thus our
tools allows a complete investigation of the reliability of a
completely unprotected GPU chip. Secondly, we had to use
SM compute capability < 2.0 since the simulator did not
support the PTXPlus mode otherwise. In future work, we will
investigate the case of employing the tracing capabilities of
AccelSim [27] in our injector so that newer SASS versions can
be used.

B. Fault Effects Breakdown of the Register File
In GPUs, the register file is the largest storage component,

and thus, the most critical one regarding the vulnerability. Fig.
1 presents the detailed AVF results for the register file of all
three cards we use in this study and for twelve different
benchmarks. In Fig. 1, we can see not only the total vulnera-

TABLE V. MICROARCHITECTURAL PARAMETERS FOR RTX 2060,
QUADRO GV100, AND GTX TITAN.

 RTX 2060 Quadro
GV100

GTX
Titan

SMs 30 80 14
Warp size 32 32 32

Maximum Threads per SM 1024 2048 2048
Maximum CTAs per SM 32 32 16

Registers per SM
(size per register: 4 bytes) 65536 65536 65536

Shared Memory per SM 64 KB 96 KB 48 ΚΒ

L1 data cache size per SM 64 KB 32 KB N/A
67.56 KB* 33.78 KB* N/A

L1 texture cache size per SM
128 KB 128 KB 48 KB
135.13
KB*

135.13
KB* 50.67 KB*

L1 instruction cache per SM
128 KB 128 KB 4 KB
135.13
KB*

135.13
KB* 4.22 KB*

L1 constant cache per SM 64 KB 64 KB 12 KB
71.13 KB* 71.13 KB* 17.78 KB*

L2 cache size 3 MB 6 MB 1.5 MB
3.17 MB* 6.33 MB* 1.58 MB*

* With 57 tag bits per cache line

Fig. 1. Fault effects breakdown of register file for all three cards (RTX 2060, Quadro GV100, and GTX Titan), for all twelve benchmarks.

12
.3
%

10
.8
%

11
.2
%

20
.3
%

22
.5
%

26
%

11
.0
%

10
.4
% 14
.6
%

18
.4
%

16
.6
%

19
.2
%

11
.0
% 15
.7
%

17
.3
%

6.
8%

5.
9%

6.
5%

25
%

19
.0
% 25
%

3.
2% 4.
3%

3.
1%

10
.4
%

8.
6%
12

.6
%

0.
5%

0.
4%

0.
6%

18
.8
%

19
.0
%

28.6%

18
.9
%

17
.0
%

17
.9
%

0%

5%

10%

15%

20%

25%

30%

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

R
TX

20
60

G
V
10

0
Ti
ta
n

HS KM SRAD1 SRAD2 LUD BFS PATHF NW GE BP VA SP

A
V

F
[%

]

Benchmarks

SDCs
Timeouts
Crashes

bility of each benchmark for each card, but also breakdown in
the four different fault effect classes, which is very important
since hardware architects can take the appropriate decisions
about the protection schemes depending on the fault effects.
Specifically, in this graph we can see that the dominant fault
effect class for all the benchmarks and GPU generations is the
SDC. There are also some benchmarks (HS, KM, LUD,
PATHF, NW, and SP) which show a great number of
Timeouts, however, Crashes are practically zero in most cases.

Another observation is that the AVF differences among dif-
ferent GPU generations are very small in most cases. This
means that most applications are very sensitive to transient
faults, and the sensitivity range to these faults primarily de-
pends on the behavior of the application. For example, as we
can see in Fig. 1, the BP benchmark shows nearly zero vulner-
ability of the register file for all GPUs, while on the other hand,
KM benchmark is consistently the benchmark with the highest
vulnerability in all chips. We also present the individual struc-
tures vulnerability breakdown on the total program’s vulnera-
bility, for two benchmarks. Fig. 2 shows the contribution of the
different hardware structures on the total AVF for SRAD2 and
HS benchmarks. Each piece of the pies is the AVF portion of
the overall benchmark AVF that is attributed to each structure.

C. AVF Results for each GPU generation
Fig. 3 presents the weighted AVF (wAVF) and the occu-

pancy (red dots) of each workload for the three GPU
generations used in this study. The wAVF is calculated based
on equation (3) discussed in the previous section. The average
warp occupancy shows the ratio of active warps to the
maximum number of warps supported on a multiprocessor of
the GPU. We collect the warp occupancy from the GPGPU-
Sim output of every static kernel, and when there are multiple
invocations of a static kernel with different number of threads,
we calculate it as a mean value. Afterwards, to compute the
average warp occupancy of an application we weight the warp
occupancy with the ratio of the static kernel’s cycles over the
application’s cycles and then add the individual weighted warp
occupancies of all static kernels.

Naturally, as Fig. 3 shows, different benchmarks have dif-
ferent AVF values. However, the vulnerability trends of the
benchmarks among different GPU generations are virtually the
same. For example, the SP benchmark is more vulnerable than
VA and BP in all three GPUs in our study. Another important
observation, which applies to all GPUs, is that benchmarks

with higher occupancy tend to show higher vulnerabilities. For
example, the SRAD2 shows increased occupancy compared to
SRAD1, which has increased occupancy compared to KM. The
same trend applies for their vulnerabilities. Of course, this
trend applies for most of the benchmarks, but not for all
benchmark combinations.

D. Performance Fault Effect
Faults in a GPU hardware structure can be masked either at

the microarchitecture level or at the software level, and thus,
the fault will not affect the execution of the application. How-
ever, there are also faults, which do not affect the functionality
of the program, but can result in performance degradation. The
reason in such a case is because the fault can affect the pro-
gram’s execution flow only. gpuFI-4 can reveal such kind of

32%

4%
1%

0%

63%

SRAD2

71%

8%

0%

0% 21%

HS

Register File

Shared Memory

L1 Data cache

L1 Texture cache

L2 cache

Fig. 2. Breakdown of the hardware structures contribution on the total
vulnerability (AVF) for two different benchmarks.

Fig. 3. Total GPU chip AVF results for (a) RTX 2060, (b) Quadro
GV100, and (c) GTX Titan, for all benchmarks used in this study, for
single-bit faults. The red dots in the graphs present the occupancy for
each different GPU generation and for each different workload.

0%

20%

40%

60%

80%

100%

0%

1%

2%

3%

4%

5%

6%

HS KM

SR
AD

1

SR
AD

2
LU
D

BF
S

PA
TH
F

NW GE BP VA SP

O
cc

up
an

cy

w
A

V
F

[%
]

Benchmarks

RTX 2060
wAVF
Occupancy

(a)

0%

20%

40%

60%

80%

100%

0%

1%

2%

3%

4%

5%

HS KM

SR
AD

1

SR
AD

2
LU
D

BF
S

PA
TH
F

NW GE BP VA SP

O
cc

up
an

cy

w
A

V
F

[%
]

Benchmarks

Quadro GV100
wAVF
Occupancy

(b)

0%

20%

40%

60%

80%

100%

0%

5%

10%

15%

20%

HS KM

SR
AD

1

SR
AD

2
LU
D

BF
S

PA
TH
F

NW GE BP VA SP

O
cc

up
an

cy

w
A

V
F

[%
]

Benchmarks

GTX Titan
wAVF
Occupancy

(c)

fault effect in GPUs, which only a microarchitecture-level reli-
ability evaluation framework like gpuFI-4 can evaluate with
high accuracy. Fig. 4 shows the magnitude of Performance
fault effects on each application for RTX 2060. It is clearly
shown in Fig. 4, that the Performance fault magnitude can be
as high as 8.6% of the total masked faults (i.e., faults that do
not affect the functionality), while on average it can be nearly
4% for all applications. The same observation is also valid for
the other two GPU cards used in this study; however, we omit
the graphs due to space limitations. Specifically, for Quadro
GV100, the Performance fault effect can be as high as 16.2%,
while for GTX Titan it can be as high as 12.2%.

E. Single-bit Flip vs. Triple-bit-Flip
As we discussed earlier, the proposed microarchitecture-

level framework for GPUs can accurately evaluate the vulnera-
bility of applications on any modern GPU architecture, not
only for single-bit faults, but also for multiple bit faults. Recent
studies have shown that although multiple-bit faults (e.g., dou-
ble-bit, triple-bit, and so on) can show relatively small vulnera-
bility difference compared to the single-bit faults, their contri-
bution is very important for assessing the hardware reliability
to soft errors [28] [29]. The reason is that in most modern mi-
croarchitectures, in which the technology nodes are gradually
reduced, the probability of a multi-bit fault to affect the pro-
gram’s execution is continuously grown. Thus, it is essential to
study not only single-bit faults, but also multiple-bit faults. To
this end, in Fig. 5 we present the breakdown of fault effects of
triple-bit faults in RTX 2060. As shown in Fig. 5, the trends
among different fault effects for each benchmark is consistent-
ly the same between single-bit faults (see Fig. 1) and triple-bit
faults (see Fig. 5) for RTX 2060.

To demonstrate the validity of evaluation results of gpuFI-
4, we also present in Fig. 6 a comparison between single-bit
and triple-bit fault injections for RTX 2060. As shown in Fig.
6, the AVF of triple-bit faults is around two times the AVF of
single-bit faults in most of the benchmarks. The tool can be
used for any other cardinality of transient faults; we show the
comparison between single-bit and triple-bit so that differences
are more visible.

F. Failure in Time (FIT) Rates
Failures in Time (FIT) rate of a device estimates the num-

ber of failures that can be expected in one billion (109) device-
hours of operation. For each hardware structure of a micropro-
cessor, a different FIT is computed using the formula in equa-
tion below.

FITstruct = AVFstruct × raw FITbit × #Bitsstruct

The FIT of the structure depends on three parameters: (1)
the FITbit (or raw FIT) rate, which is determined by the fabrica-
tion technology and the operational conditions and expresses
the fault probability of a single bit, (2) the number of bits of the
structure, and (3) the AVF of the structure, which is affected by
the microarchitecture and the executed workload. The raw FIT
rate expresses the rate of transient faults introduced in the
component, while the AVF is the derating factor that quantifies
how many of these bit upsets will lead to a failure. The product
provides the FIT rate of a particular hardware structure. The
FIT rate of the entire GPU is calculated by adding the individ-
ual FITs of the structures. For the calculation of the FIT, we
use the raw FIT rate per bit for each GPU card, as described in
[21] [30] [31]. Specifically, the raw FIR rate for RTX 2060 and
Quadro GV100 (which are fabricated at 12nm) is 1.8 x 10-6 and
for GTX Titan (which is fabricated at 28nm) is 1.2 x 10-5. Fig.
7 shows the FIT rates for all GPU generations and benchmarks
used in this study. For most of the benchmarks we can see that
the older the GPU is, the larger the overall FIT values. This is
expected, since older GPU generations (i.e., GTX Titan) were

1.6%

7.8%

2.3%
1.5%

0.0%

5.1%

8.6%

6.8%

1.5%

6.9%

0.0%

3.
5% 3.8%

0%

2%

4%

6%

8%

10%

HS KM

SR
AD

1

SR
AD

2
LU
D

BF
S

PA
TH
F

NW GE BP VA SP AV
G

P
er

fo
rm

an
ce

 [
%

]

Benchmarks

RTX 2060

Fig. 4. Single-bit faults that result in performance degradation but the
functionality of the application is correct.

Fig. 5. Fault effect breakdown for triple-bit faults in RTX 2060.

15
.3
%

25.7%

14.2%

20
.9
%

12
.8
%

6.
7%

26.7%

2.
9%

15.6%

0.
8%

25
.0
%

26
.1
%

0%

5%

10%

15%

20%

25%

30%

HS KM

SR
AD

1

SR
AD

2
LU
D

BF
S

PA
TH
F

NW GE BP VA SP

A
V

F
[%

]

Benchmarks

SDCs
Timeouts
Crashes

Fig. 6. Weighted AVF for single-bit (blue color) vs. triple-bit (red
color) fault injections for GTX 2060 and for twelve benchmarks.

0%

2%

4%

6%

8%

10%

12%

HS KM

SR
AD

1

SR
AD

2
LU
D

BF
S

PA
TH
F

NW GE BP VA SP

w
A

V
F

[%
]

Benchmarks

AVF (RTX 2060)

1-bit 3-bit

fabricated in higher technology (e.g., 28nm for GTX Titan, and
12nm for RTX 2060 and Quadro GV100), and thus, the raw
FIT rates are significantly higher than the newer ones.

VII. CONCLUSION
In this paper, we presented gpuFI-4, a detailed fault injec-

tion framework built on top of a state-of-the-art microarchitec-
tural simulator of GPGPU architectures, GPGPU-sim 4.0.
High-throughput, comprehensive injection campaigns for sin-
gle and multiple transient faults on one or more of the critical
hardware components of a GPU are supported by this fully
parameterized framework. The supported hardware compo-
nents are the register file, the local and shared memory, the L1
data and texture cache, and the L2 cache. Using 12 different
CUDA programs, we performed a complete reliability test of
the target hardware components, thus estimating the Architec-
tural Vulnerability Factor (AVF) of a GPU. Our study reveals
significant diverging behaviors on the results of fault injections
on different workloads as well as on different hardware capa-
bilities by comparing the results between GPU cards: RTX
2060, Quadro GV100, and GTX Titan. The framework can be
used for differential studies on the reliability of hardware com-
ponents running any CUDA workload and support early design
decisions for fault protection mechanisms. gpuFI-4 is publicly
available at https://github.com/caldi-uoa/gpuFI-4.

ACKNOWLEDGMENT
This research has been supported by the European Union

Horizon 2020 programme through a H2020 Tetramax project
TTX (Grant 761349) and the H2020 UniServer project (Grant
688540), as well as the FP7 Clereco project (Grant 611404).

REFERENCES
[1] R. Baumann, "Soft errors in advanced computer systems," in IEEE

Design & Test of Computers, vol. 22, no. 3, pp. 258-266, May-June
2005, doi: 10.1109/MDT.2005.69.

[2] C. Constantinescu, "Trends and challenges in VLSI circuit reliability,"
in IEEE Micro, vol. 23, no. 4, pp. 14-19, July-Aug. 2003, doi:
10.1109/MM.2003.1225959.

[3] L. Huang and Q. Xu, "AgeSim: A simulation framework for evaluating
the lifetime reliability of processor-based SoCs," 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010),
2010, pp. 51-56, doi: 10.1109/DATE.2010.5457238.

[4] S. R. Nassif, N. Mehta and Y. Cao, "A resilience roadmap," 2010
Design, Automation & Test in Europe Conference & Exhibition (DATE
2010), 2010, pp. 1011-1016, doi: 10.1109/DATE.2010.5456958.

[5] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt and T. Austin, "A
systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor," Proceedings. 36th
Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36., 2003, pp. 29-40, doi:
10.1109/MICRO.2003.1253181.

[6] G. Papadimitriou and D. Gizopoulos, "Demystifying the System
Vulnerability Stack: Transient Fault Effects Across the Layers," 2021
ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 902-915, doi:
10.1109/ISCA52012.2021.00075.

[7] R. Leveugle, A. Calvez, P. Maistri and P. Vanhauwaert, "Statistical fault
injection: Quantified error and confidence," 2009 Design, Automation &
Test in Europe Conference & Exhibition, Nice, 2009, pp. 502-506, doi:
10.1109/DATE.2009.5090716.

[8] H. Jeon, M. Wilkening, V. Sridharan, S. Gurumurthi, G. H. Loh,
“Architectural Vulnerability Modeling and Analysis of Integrated
Graphics Processors”, in Silicon Errors in Logic – System Effects
(SELSE), 2013.

[9] N. Farazmand, R. Ubal, D. Kaeli, "Statistical fault injection-based AVF
analysis of a GPU architecture", in Silicon Errors in Logic – System
Effects (SELSE), 2012.

[10] J. Tan, N. Goswami, T. Li and X. Fu, "Analyzing soft-error vulnerability
on GPGPU microarchitecture," 2011 IEEE International Symposium on
Workload Characterization (IISWC), 2011, pp. 226-235, doi:
10.1109/IISWC.2011.6114182.

[11] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa and S. W. Keckler,
"NVBitFI: Dynamic Fault Injection for GPUs," 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2021, pp. 284-291, doi:
10.1109/DSN48987.2021.00041.

[12] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler and J. Emer,
"SASSIFI: An architecture-level fault injection tool for GPU application
resilience evaluation," 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2017, pp.
249-258, doi: 10.1109/ISPASS.2017.7975296.

[13] H. Yue, X. Wei, G. Li, J. Zhao, N. Jiang, and J. Tan, “G-SEPM:
building an accurate and efficient soft error prediction model for
GPGPUs,” Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’21),
2021, doi: 10.1145/3458817.3476170.

[14] B. Fang, K. Pattabiraman, M. Ripeanu and S. Gurumurthi, "GPU-Qin: A
methodology for evaluating the error resilience of GPGPU applications,"
2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2014, pp. 221-230, doi:
10.1109/ISPASS.2014.6844486.

[15] S. Tselonis and D. Gizopoulos, "GUFI: A framework for GPUs
reliability assessment," 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2016, pp. 90-
100, doi: 10.1109/ISPASS.2016.7482077.

Fig. 7. Total FIT rates for the three GPU cards and twelve benchmarks used in this study.

7.
37

1.
22

2.
03

12
.3

8

0.
54 1.
48

2.
40

0.
66

0.
13

1.
17 2.
05 6.

77

20
.1

1.
1 2.

8

17
.2

1.
0

1.
8 5.

3

0.
7

0.
2

0.
8

9.
7

25
.2

43.64

3.
92

17
.6

8

2.
99

22
.7

4

13
.0

3

3.
97

1.
38

13
.9

2

12
.1

1

41.52

0
5

10
15
20
25
30
35
40
45

HS KM SRAD1 SRAD2 LUD BFS PATHF NW GE BP VA SP

FI
T

Benchmarks

RTX 2060 Quadro GV100 GTX Titan68.1

[16] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong and T. M. Aamodt,
"Analyzing CUDA workloads using a detailed GPU simulator," 2009
IEEE International Symposium on Performance Analysis of Systems
and Software, 2009, pp. 163-174, doi: 10.1109/ISPASS.2009.4919648.

[17] M. Hernandez, G. D. Guerrero, J. M. Cecilia, J. M. Garcia, A. Inuggi
and S. N. Sotiropoulos, "Accelerating Fibre Orientation Estimation from
Diffusion Weighted Magnetic Resonance Imaging Using GPUs," 2012
20th Euromicro International Conference on Parallel, Distributed and
Network-based Processing, 2012, pp. 622-626, doi:
10.1109/PDP.2012.46.

[18] R. Ubal, B. Jang, P. Mistry, D. Schaa and D. Kaeli, "Multi2Sim: A
simulation framework for CPU-GPU computing," 2012 21st
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2012, pp. 335-344, doi:
10.1145/2370816.2370865.

[19] J. Tan, Z. Li, and X. Fu, “Cost-effective soft-error protection for SRAM-
based structures in GPGPUs,” Proceedings of the ACM International
Conference on Computing Frontiers (CF ’13), 2013, pp. 1-10, doi:
10.1145/2482767.2482804.

[20] G. Papadimitriou and D. Gizopoulos, “Characterizing Soft Error
Vulnerability of CPUs Across Compiler Optimizations and
Microarchitectures”, IEEE International Symposium on Workload
Characterization (IISWC), 2021, pp. 113-124, doi:
10.1109/IISWC53511.2021.00021.

[21] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos and
P. Rech, "Demystifying Soft Error Assessment Strategies on ARM
CPUs: Microarchitectural Fault Injection vs. Neutron Beam
Experiments," 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2019, pp. 26-38, doi:
10.1109/DSN.2019.00018.

[22] P. Bodmann, G. Papadimitriou, R. L. Rech Junior, D. Gizopoulos and P.
Rech, "Soft Error Effects on Arm Microprocessors: Early Estimations
vs. Chip Measurements," in IEEE Transactions on Computers, doi:
10.1109/TC.2021.3128501.

[23] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler and J. Emer,
"SASSIFI: An architecture-level fault injection tool for GPU application
resilience evaluation," 2017 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2017, pp.
249-258, doi: 10.1109/ISPASS.2017.7975296.

[24] G. Li, K. Pattabiraman, C. Cher and P. Bose, "Understanding Error
Propagation in GPGPU Applications," SC '16: Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2016, pp. 240-251, doi:
10.1109/SC.2016.20.

[25] S. Che et al., "Rodinia: A benchmark suite for heterogeneous
computing," 2009 IEEE International Symposium on Workload
Characterization (IISWC), 2009, pp. 44-54, doi:
10.1109/IISWC.2009.5306797.

[26] NVIDIA CUDA SDK 5.5, [Online]. Available:
https://developer.nvidia.com/cuda-toolkit-55-archive

[27] M. Khairy, Z. Shen, T. M. Aamodt and T. G. Rogers, "Accel-Sim: An
Extensible Simulation Framework for Validated GPU Modeling," 2020
ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 473-486, doi:
10.1109/ISCA45697.2020.00047.

[28] H. Cho, S. Mirkhani, C. Cher, J. A. Abraham and S. Mitra, "Quantitative
evaluation of soft error injection techniques for robust system design,"
2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),
2013, pp. 1-10, doi: 10.1145/2463209.2488859

[29] A. Chatzidimitriou, G. Papadimitriou, C. Gavanas, G. Katsoridas and D.
Gizopoulos, "Multi-Bit Upsets Vulnerability Analysis of Modern
Microprocessors," 2019 IEEE International Symposium on Workload
Characterization (IISWC), 2019, pp. 119-130, doi:
10.1109/IISWC47752.2019.9042036.

[30] G. Li, S. K. Sastry Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding error propagation in deep learning
neural network (DNN) accelerators and applications,” Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’17), 2017, pp. 1-12 doi:
10.1145/3126908.3126964.

[31] A. Neale and M. Sachdev, "Neutron Radiation Induced Soft Error Rates
for an Adjacent-ECC Protected SRAM in 28 nm CMOS," in IEEE
Transactions on Nuclear Science, vol. 63, no. 3, pp. 1912-1917, June
2016, doi: 10.1109/TNS.2016.2547963.

