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Abstract—Pre-silicon reliability evaluation of processors is 

usually performed at the microarchitecture or at the software 
level. Recent studies on CPUs have, however, shown that soft-
ware level approaches can mislead the soft error vulnerability 
assessment process and drive designers towards wrong error 
protection decisions. To avoid such pitfalls in the GPUs domain, 
the availability of microarchitecture level reliability assessment 
tools is of paramount importance. Although there are several 
publicly available frameworks for the reliability assessment of 
GPUs, they only operate at the software level, and do not consid-
er the microarchitecture. This paper aims at accurate microar-
chitecture level GPU soft error vulnerability assessment. We 
introduce gpuFI-4: a detailed microarchitecture-level fault injec-
tion framework to assess the cross-layer vulnerability of hard-
ware structures and entire GPU chips for single and multiple bit 
faults, built on top of the state-of-the-art simulator GPGPU-Sim 
4.0. We employ gpuFI-4 for fault injection of soft errors on 
CUDA-enabled Nvidia GPU architectures. The target hardware 
structures that our framework analyzes are the register file, the 
shared memory, the L1 data and texture caches and the L2 
cache, altogether accounting for tens of MBs of on-chip GPU 
storage. We showcase the features of the tool reporting the vul-
nerability of three Nvidia GPU chip models: two different mod-
ern GPU architectures – RTX 2060 (Turing) and Quadro GV100 
(Volta) – and an older generation – GTX Titan (Kepler), for both 
single-bit and triple-bit fault injections and for twelve different 
CUDA benchmarks that are simulated on the actual physical 
instruction set (SASS). Our experiments report the Architectural 
Vulnerability Factor (AVF) of the GPU chips (which can be only 
measured at the microarchitecture level) as well as their predict-
ed Failures in Time (FIT) rate when technology information is 
incorporated in the assessment. 

Index Terms—reliability; GPU; transient faults; microarchi-
tecture-level fault injection; silent data corruptions; crashes 

I. INTRODUCTION 
Silicon manufacturing advancements have established new 

generations of digital devices with a wealth of transistors that 
improve the performance and functionality. On the downside, 
however, the ever-increasing rate of hardware faults in newer 
technologies can jeopardize the aggressive evolution of CPUs, 
GPUs, and other processing units. CPUs and GPUs have major 
architectural differences but their reliable operation can be sim-
ilarly and significantly affected by transient faults (soft errors), 
intermittent faults, and permanent faults (hard errors)  [1] [2] 

[3]. Such hardware faults can be caused by several different 
phenomena related to radiation, process variation, wear-out, 
aging, etc. [4]. Even though the sources of failure are well-
known, it is crucial to precisely evaluate their impact on mod-
ern CPU and GPU architectures across the full stack of hard-
ware and software.  

The most comprehensive way to measure the vulnerability 
of the entire system stack (cross-layer vulnerability) including 
the microarchitecture, the architecture, and the software layers 
(both user and kernel space) is to determine the Architectural 
Vulnerability Factor (AVF) [5] of each individual microarchi-
tectural structure during end-to-end program execution [6]. 
AVF is the probability that a fault (bit flip) in a hardware 
structure will result in an observable error at the application 
output. AVF can be measured either using analytical methods 
such as the Architecturally Correct Execution (ACE) analysis 
[5] or using fault injection [7]. AVF measurements through 
statistically significant fault injection provide useful insights 
for the vulnerability across the entire system stack, but this 
comes with the expense of long simulation runs. While AVF 
has been initially proposed for the assessment of reliability in 
CPUs, it has also been adapted to GPUs [8] [9] [10]. Although 
several tools and methodologies have been reported in the lit-
erature for the evaluation of the vulnerability of CPUs at dif-
ferent layers of abstraction, from the microarchitecture all the 
way to the software, vulnerability evaluation tools for GPUs 
are either limited to the software level only [11] [12] [13] [14] 
or do not support recent GPU architectures [15]. Among these 
GUFI [15] is the only microarchitecture level framework for 
GPUs reliability assessment, however, (a) it is incomplete 
(many essential GPU hardware components are not consid-
ered), (b) it is limited to older GPU generations, (c) it supports 
only single-bit faults, and (d) it is not publicly available. 

Microarchitecture-level vulnerability assessment of GPUs 
is very important during the early design stages and can help to 
measure the benefits of different error protection techniques 
against the overheads they incur on an initially unprotected 
design. As a result, much effort must be devoted to effectively 
measure a system's vulnerability as early as possible and 
making appropriate design decisions for error protection. Early 
decisions on protective mechanisms, on the other hand, are 
difficult to make because critical factors are unknown at the 
early phases of a system's design such as the final size of 



 

hardware components and the diversity of workloads. As a 
result, early reliability assessment using microarchitectural 
simulators and the flexibility it offers for design space explora-
tion is of great importance before the late stages of chip design.  

In this paper, we describe a comprehensive GPUs fault 
injection framework built on top of the latest version of the 
state-of-the-art cycle-level GPGPU-Sim 4.0 simulator [16], for 
measuring the AVF of individual hardware structures of GPUs 
as well as entire GPU chips. Unlike previous efforts [11] [12] 
[13] [15], our proposed framework can evaluate modern GPU 
architectures at the hardware level considering a large number 
of important microarchitectural components, it can inject both 
single and multi-bit faults and reports the complete cross-layer 
AVF. Our framework is capable of injecting transient faults on 
most of the important hardware components of modern Nvidia 
GPUs: the register file, the shared memory, the local memory, 
the L1 data/texture cache, and the L2 cache. 

We make the following contributions: 
1. We propose a new microarchitecture-level fault injec-

tion framework (gpuFI-4) for assessing the cross-layer 
resilience of modern GPUs, which is built on top of the 
well-known state-of-the-art GPGPU-Sim 4.0 microar-
chitectural simulator. gpuFI-4 consists of three mod-
ules: a fault masks generator, an injection campaign 
controller and a parser of the logged information. It al-
lows extensive studies with single or multiple faults in-
jected in: (i) different bits of the same entry of a hard-
ware structure, (ii) different entries of a structure, (iii) 
different hardware structures simultaneously, (iv) all 
combinations of the above. 

2. We report results for single-bit and triple-bit fault (to 
report significant differences) on important microarchi-
tectural structures to demonstrate how our tool can 
comprehensively assist design decisions for error pro-
tection of individual components unlike other related 
frameworks in the literature that consider faults only at 
the software layer (and thus cannot pinpoint the weak-
est hardware structures). Therefore, our injection 
framework can serve many different reliability studies. 

3. We showcase the effects of soft errors on three differ-
ent GPU generations (the most recent RTX 2060 of 
Turing microarchitecture and Quadro GV100 of Volta 
microarchitecture, and an older generation GTX Titan 
of Kepler microarchitecture), for the important micro-
architectural components and for both single-bit and 
triple-bit faults. 

4. We finally present the predicted Failures in Time (FIT) 
rate of the entire GPUs (failures per billion hours of 
operation). By using FIT rates (which incorporate 
technology failure rate information), we can further ex-
tend our analysis on the vulnerability of different GPU 
generations. The FIT rate can be used to provide essen-
tial insights about the vulnerability trends among older 
and newer GPU architectures for the same workloads.  

II. BACKGROUND & RELATED WORK 

A. Background 
The Graphic Processing Unit (GPU) was initially designed 

for real-time graphics. A modern GPU, however, is not only a 
strong graphics processor, but also a general purpose accelera-
tor that focuses on parallel processing and high data 
bandwidth. Given that the performance improvement of CPUs 
has significantly slowed down over the last two decades, GPUs 
have gained the interest of the industry for general-purpose 
computing purposes when data parallelism is ample. GPUs 
could become a very promising contender in high performance 
computing with rapid increases in both the computational 
power and the programmability. 

Nvidia is one of the biggest GPU providers in the world 
and its CUDA-capable GPUs are of great performance in the 
field of GPU computing. GPUs contain streaming 
multiprocessors (SM), each containing several Stream 
Processors (SPs). The GPU has a global scheduler (Giga 
Thread) for distributing the work to the SMs and a host 
interface to the CPU. Different large memory spaces are 
available within a GPU chip, having different latencies, storage 
capacity and access methods. These memory spaces, from the 
faster to the slower are: the register file (32,768 32-bit registers 
per SM in Nvidia compute capability devices 2.X), the shared 
memory/L1 cache (64 KB per SM), the L2 cache (768 KB) and 
the global memory Graphic Double Data Rate (GDDR) 
DRAM (1 – 6 GB) [17]. The number of the SMs, SPs and the 
sizes of the memory spaces can be different from across 
generations and usually get larger in newer generations.  

The streaming processors within one streaming 
multiprocessor share the constant cache, the texture cache and 
the instruction unit. Each streaming processor has its own 
register file for storing data that are frequently used. The 
register file of each processor is a small on-chip memory that 
has an extremely short access time. There is also a block 
memory referred to as shared memory. This is designed for 
communication across streaming processors and is 
implemented on-chip with very low access latency. 

A GPU has a local memory, a global memory, a shared 
memory, a data cache, a constant cache, a texture cache, and 
the registers. The sizes of these memory components vary 
between different microarchitectures from a few kilobytes 
(e.g., caches) to some gigabytes (e.g., global memory). The 
total size of the supported memories that we used in our 
experiments for RTX 2060, Quadro GV100 and GTX Titan are 
shown in Table I. Each CUDA thread may access data from 
them during its execution. Each thread has a private local 
memory. The local memory space resides in the device 
memory, so local memory accesses have the same high latency 
and low bandwidth as the global memory accesses. Registers 
are private to a streaming processor to store the most 
frequently used data. Constant cache is designed to cache in the 
constant memory. Data can be declared as constant if they will 
not be changed during the execution of the program. Shared 



 

memory is used to allow streaming processors to communicate. 
All threads have access to the same global memory and is used 
for communication between host CPU and GPU, since GPU 
cannot access the main memory of the CPU. Data that will be 
handled by the GPU must first be copied to global memory and 
the results obtained from the GPU must be copied back to the 
CPU memory with the appropriate API (i.e., cudaMemcpy). 

B. GPGPU-sim Overview 
GPGPU-Sim is a cycle-level simulator modeling contem-

porary Nvidia GPUs running GPU computing workloads writ-
ten in CUDA or OpenCL. The simulator is capable of running 
either Parallel Thread Execution assembly (PTX) or SASS 
assembly. The earlier versions of the simulator supported only 
PTX executions but since PTX is only a virtual ISA (Instruc-
tion Set Architecture) and not the actual binary code that runs 
on the hardware this was a major limitation of the previous 
versions. In order to lift the limitation, the developers of 
GPGPU-Sim decided to extend PTX with the required features 
to provide a one-to-one mapping to SASS. PTX along with the 
extensions is called PTXPlus in GPGPU-Sim terminology. 

The GPU architecture that is modeled by GPGPU-Sim is 
composed of Single Instruction Multiple Thread (SIMT) cores 
connected via an on-chip interconnection network to memory 
partitions that interface to graphics GDDR DRAM. An SIMT 
core models a highly multithreaded pipelined SIMD processor 
roughly equivalent to what Nvidia calls a Streaming Multipro-
cessor (SM) or what AMD calls a Compute Unit (CU). The 
SIMT Cores are grouped into SIMT Core Clusters. The SIMT 
Cores in a SIMT Core Cluster share a common port to the in-
terconnection network. A Stream Processor (SP) or a CUDA 
Core would correspond to a lane within an ALU pipeline in the 
SIMT core. 

GPGPU-Sim 4.0 supports the various memory spaces as 
visible in PTX. Each SIMT core has 4 different on-chip level 1 
memories: shared memory, data cache, constant cache, and 
texture cache. Table II shows which on chip memories service 
which type of memory access. Regarding the memory system 
in GPGPU-Sim 4.0, it is modelled by a set of memory 
partitions. Each memory partition contains an L2 cache bank, a 
DRAM access scheduler and the off-chip DRAM channel. The 
L2 cache (when enabled) services the incoming texture and 
(when configured to do so) non-texture memory requests. For 
our analysis L2 cache is configured to service all memory re-

quests. The reader is referred to [16] for a comprehensive 
overview of the GPGPU-Sim microarchitecture. 

C. Related Work 
The reliability of GPU architectures has been studied 

recently, with the starting point of the faults being either at the 
hardware or at the software. GUFI [15] is an older 
microarchitecture-level fault injection framework which was 
built on top of GPGPU-Sim [16]. Unlike GUFI which uses the 
obsolete GPGPU-Sim 3.0, our gpuFI-4 tool is built on top of 
the latest simulator version 4.0. Another main difference is that 
our framework studies transient faults on more crucial 
hardware components, and thus, our experiments report meas-
urements on a significantly larger area of a GPU silicon than 
GUFI (18.5MB and 47MB in total for RTX 2060 and Quadro 
GV100, respectively). Moreover, by using the latest version of 
the simulator we are capable of testing the most modern GPU 
architectures as well (GPGPU-Sim 3.0 (partially) supports up 
to Kepler architecture, while GPGPU-Sim 4.0 supports up to 
Ampere architecture). Other reliability evaluation approaches 
that employ microarchitectural simulators like GPGPU-Sim 
and Multi2sim [18] are also available, although they both 
measure the Architectural Vulnerability Factor (AVF) of 
hardware structures using the Architectural Correct Execution 
(ACE) analysis [8] [10] [19] and not through statistically sig-
nificant fault injections. As a result, such approaches come 
with the inherent overestimation of the AVF of the 
microprocessor structures [6] [20] [21] [22] and cannot provide 
detailed fault effect classifications (output corruptions vs. 
crashes for example), which is what our injector does. 
Software-level fault injections in real Nvidia GPUs have also 
been studied with tools like NVBitFI [11], SASSIFI [23], 
GPU-Qin [14], and LLFI-GPU [24]; these tools only focus on 
the program resilience and do not deliver AVF measurements 
as in our analysis which allows injection of faults in the actual 
hardware structures. Table III summarizes the fault injection 
frameworks in both software and microarchitecture level, 
showing the major limitations of the previously published 
tools. 

III. GPUFI-4: A MICROARCHITECTURE-LEVEL FRAMEWORK  
FOR ASSESSING THE CROSS-LAYER RESILIENCE OF GPUS 

A. Overview 
gpuFI-4 is a complete and extensible framework for relia-

bility evaluation of Nvidia GPU architectures that runs on top 
of a well-known simulator of GPUs architectures: GPGPU-Sim 
4.0. gpuFI-4 considers transient fault injection campaigns on 

TABLE I. MEMORY STRUCTURES SIZES ACROSS GENERATIONS. 

 RTX 2060 
(#SMs: 30) 

Quadro GV100 
(#SMs: 80) 

GTX Titan 
(#SMs: 14) 

Register File 7.5 MB 20 MB 3.5 MB 
Shared Memory 1.875 MB 7.5 MB 672 KB 

L1 data cache 1.98 MB 2.64 MB N/A 
L1 texture cache 3.96 MB 10.56 MB 709.38 KB 

L1 instruction cache 3.96 MB 10.56 MB 59.08 KB 
L1 constant cache 2.08 MB 5.56 MB 248.92 KB 

L2 cache 3.17 MB 6.33 MB 1.58 MB 

 

TABLE II. CUDA SUPPORTED MEMORY SPACES IN GPGPU-SIM. 
Core Memory PTX Accesses 

Shared memory (R/W) shared memory accesses only 
Constant cache (Read Only) Constant and parameter memory 
Texture cache (Read Only) Texture accesses only 
Data cache (R/W - evict-on-

write for global memory, 
writeback for local memory) 

Global and Local memory 
accesses 

 



 

PTX or SASS mode, using single or multiple bit-flips during 
the execution of an application as explained in Table IV for 
each hardware component. The fault injection campaign in a 
hardware component can be set either for a user-defined kernel 
invocation or the whole application. We focused our study on 
CUDA applications running on SASS mode and using single 
and multiple bit-flips per kernel injection campaigns. 

gpuFI-4 consists of two parts: a back-end and a front-end. 
The back-end is the actual implementation of the fault injec-
tion. It has been developed on top of GPGPU-Sim 4.0 and sev-
eral input parameters have been created for this purpose which 
are passed through the gpgpusim.config configuration file to 
the simulator. The front-end part is a bash script, which initial-
izes the newly created parameters, executes the campaigns, and 
collects the results. The following subsections explain the 
frontend part and what steps should be followed until the exe-
cution of the injection campaigns. The backend implementa-
tion is discussed in the Section IV. 

B. CUDA application preparation 
gpuFI-4 relies its evaluation process on the printed message 

of a CUDA application which states whether it succeeded or 
failed. As a result, the applications should be slightly modified 
to compare the results of the GPU part execution with either a 
predefined result file (based on a fault-free execution) or the 
results that come from the CPU “golden” reference execution 
and print a custom message in the standard output accordingly. 
We employ the predefined result file in our implementation for 
faster execution of our experiments. 

C. Profiling and campaign preparation 
The bash script of the front-end requires several parameters 

to be configured before the injection campaigns are performed. 
We can classify these parameters into four abstract groups: (1) 
the first group contains one-time parameters, and it is called 
one time, (2) the second group contains parameters that need to 
be initialized once per GPGPU card and are necessary to define 
values that describe some of the hardware structures; it is 
called per GPGPU card and (3) in the third group, there are 
parameters that need to be initialized every time we analyze the 
vulnerability of a new CUDA application or single kernel; it is 
called per kernel/application. (4) Parameters that belong to the 
fourth group are responsible for executing different injection 
campaigns; it is called per injection campaign parameters. For 
the last group, per injection campaign, the values of the 

parameters corresponding to a component that we are not 
injecting faults will be ignored.   

IV. IMPLEMENTATION 
In this section we discuss the backend of the proposed 

framework, and how gpuFI-4 is implemented on top of 
GPGPU-Sim 4.0. First, we present the main technical chal-
lenges of the simulator that we had to overcome in order to 
model the transient faults as they were injected on a real 
GPGPU and then we will discuss how the actual fault injec-
tions are implemented on each supported hardware structure. 

A. Technical challenges of GPGPU-Sim 4.0 
One of the main challenges imposed by the simulator is that 

it consists of three major modules which had to be synchro-
nized: the functional simulator, the performance simulator, and 
the interconnection network simulator. Our framework is de-
veloped in the first two modules. The functional simulator is 
responsible for executing the PTX or SASS kernels, while the 
performance simulator is the one that simulates the timing be-
havior of a GPU. As a result, the task of injecting faults at a 
hardware structure was a complex one as it had to communi-
cate information between these two modules. We use the per-
formance module to define the timing constraints of the inject-
ed faults, while the functional module is used to define the spa-
tial constraints. 

Another challenge of GPGPU-Sim 4.0 is that, due to the 
nature of a simulator, it does not have the actual hardware 
structures in place or fully allocated at the beginning of kernel 
execution. In that case, the implementation first had to identify 
the necessary running elements (e.g., threads, CTAs – Com-
pute Thread Arrays, SIMT cores) to get access to the hardware 
components on which we want to inject the transient faults. 

The third and last major challenge is that the caches in 
GPGPU-Sim 4.0 are holding only the tag value along with 
some other information and not the actual data. The data are 

TABLE III. RELATED RELIABILITY FRAMEWORKS AND COMPARISON. 

 Layer GPGPU-sim 
Version 

Multi-bit 
Support 

# of Target 
Components 

GPU Gen-
erations 

SASSIFI [23] SW -  - 2010-2014 
NVBitFI [11] SW -  - 2012-2020 
GPU-Qin [14] SW -  - Ν/Α 
G-SEPM [13] SW -  - Ν/Α 

LLFI-GPU [24] SW -  - 2012-2015 
GUFI [15] uArch 3.0  2 2006-2011 
This Work uArch 4.0  6 2006-2020 

 

TABLE IV. GPUFI-4 TARGET HARDWARE STRUCTURES. 
HW Component Support 

Register File 

• Single or multiple bit-flips in one or more registers 
of a thread. 

• Single or multiple bit-flips in one or more registers 
of a warp. Meaning that every thread of the warp 
will be affected with the same injections. 

Shared Memory 

• Single or multiple bit-flips in a shared memory of 
one or more blocks. Shared memory in an Nvidia 
GPU is private per block (CTA) and in that case, a 
user can perform the same shared memory injec-
tions on multiple blocks. 

L1 Data Cache 

• Single or multiple bit-flips in the L1 data cache of 
one or more SIMT cores. L1 cache in an Nvidia 
GPU is private, per-SIMT core and in that case, a 
user can inject the same errors on multiple L1 data 
caches. 

L1 Texture Cache • Same as L1 data cache. 

L2 Cache • Single or multiple bit flips. 

Local Memory 
(off-chip) 

• Single or multiple bit-flips in a local memory of a 
thread or a warp. Local memory in an Nvidia GPU 
is private memory per thread. 

 



 

kept on different memory structures and the connection be-
tween the cache line and the data is known later on during 
cache access. This made the fault injections harder to imple-
ment and we had to come up with several hooks during cache 
access and recognize accordingly if the fault should be injected 
or not on the actual arrays that hold the caches data. 

B. Fault injection implementation 
In this section, we discuss the procedure of a fault injection 

on each supported hardware structure, which are the register 
file, the local memory, the shared memory, the L1 data and 
texture cache, and the L2 cache. The fault injection takes place 
at a specific cycle of the application requested by the user. 

1) Register File 
Each thread on an Nvidia GPU uses a subset of the register 

file and the simulator does not reserve the registers of an active 
thread from a hardware structure nor does it make all the regis-
ters available from the beginning but it rather allocates them 
dynamically during its execution. An active thread is a thread 
that is created and is accessible from the simulator during the 
application execution until its workload is completed. The tool 
at a given cycle chooses a random active thread and injects the 
transient fault at a random register of that thread among the 
registers allocated to the thread. The ability to target a register, 
which is not yet allocated from that thread, comes from the fact 
that the register allocation policy per thread is deterministic 
and such injections have no effect on the execution. The same 
technique is used to inject faults on an entire warp but instead 
of choosing a random thread, the implementation chooses a 
random warp and applies the same transient faults on all the 
threads of the warp. This way, the tool achieves randomized 
fault injection with statistical significance (which of course 
depends on the number of injections). 

2) Local Memory 
The same approach as the register file injections applies al-

so in local memory, but for the local memory the granularity is 
by thread and not by registers. 

3) Shared Memory 
Each block of threads (CTA – Compute Thread Array) on 

an Nvidia GPU uses its own instance of the shared memory 
and the shared memories that are visible from the simulator are 
the ones that their block is active. An active block is a block 
that is created and accessible from the simulator during the 
application execution until its workload is completed. The 
framework at a given cycle chooses one, or multiple, if re-
quested, active blocks and it proceeds with the fault injections 
on their assigned shared memory. If multiple blocks are re-
quested then the same fault injections will occur on each 
shared memory. 

4) L1 data / texture cache 
The L1 data cache per SIMT core is private in an Nvidia 

GPU. The tool at a given cycle first chooses a random SIMT 
core among the SIMT cores that a user has defined as an input 

parameter. Then the cache line of that core’s L1 data cache can 
be retrieved based on the bit that we want to flip. That bit can 
be either in the tag or in the data part of the cache line. In the 
first case, we can easily inject the error (flip the bit) into the 
tag. In the second case and only if the cache line is valid, then 
we create a fault injection hook. This is because the connection 
between the cache line and where the data lives is known upon 
cache access. That hook is activated every time we have access 
to the aforementioned cache line. When there is read access 
then if there is a hit and the bit that we want to flip is between 
the data bits, we perform the fault injection in the retrieved data 
and if it’s a miss then we completely deactivate that hook since 
the cache line is going to be replaced. When there is write ac-
cess, then the hook gets deactivated if it’s a hit. On a write 
miss, we are not doing anything since the L1 data cache has 
write no-allocate write miss policy [16]. For multiple bit-flip 
injections the procedure is the same for each bit. 

5) L2 cache 
The same approach is applied as in the case of the L1 da-

ta/texture cache with the difference that the L2 cache is public 
to all of the applications. Internally the simulator splits the L2 
cache into banks where each bank is assigned in a memory 
partition [16]. For that reason, the simulator creates an abstrac-
tion and treats the L2 cache as a single entity where the first N 
lines of the cache belong to the first bank with zero identifica-
tion and so on. With that said, the range of the bits that we can 
flip is within the total size of the L2 cache. An important thing 
to note is that the injection hooks of that cache are working 
only on local, global, and texture data and not for instruction 
and constant data. This is due to some problems that appeared 
with the instruction and constant data caching as explained 
below. 

C. Miscellaneous 
1) L1 constant/instruction cache 
These caches were not implemented for fault injection 

campaigns and will be added in future version of our tool after 
resolving some technical limitations. For the L1 constant 
cache, during the development, we found out that the connec-
tion between a cache line and the corresponding data was im-
possible to locate, hence the hooks could not work properly in 
this case. For the L1 constant cache, there is no connection 
between a cache line and the corresponding data, and thus, the 
hooks could not work properly in this case. Luckily, the issue 
is propagated only to the performance part (constant cache 
hits/miss statistics) and does not affect the execution of the 
application. For the L1 instruction cache similar limitations 
apply. 

2) Cache line and tag 
A cache line in general consists of the data bits and some 

extra bits like tag/dirty/valid, bits for the replacement policy 
and more. Since the simulator does not have a real hardware 
structure for caches, this framework is capable of modeling an 
abstract view of the cache row as if there were tag bits before 



 

the data bits. This gives us the ability to have more accurate 
results in our experiments. We do not take into account other 
bits because we decided to make the implementation simpler, 
and we believe that the impact on the results would be negligi-
ble because of their size. The fraction of those extra bits is very 
small compared to the whole cache and so the probability of 
injecting a transient fault is very low. Note that the tag length 
that we were able to include consists of 57 bits.  

V. METHODOLOGY & BENCHMARKS 

A. Methodology 
gpuFI-4 evaluates the Architectural Vulnerability Factor 

(AVF) of each kernel and each hardware component. To 
measure the Architectural Vulnerable Factor (AVFGPU) of an 
Nvidia GPU chip during the execution of a CUDA application, 
we first measure the AVF for each application’s kernel 
(AVFkernel) independently, and then we compute their weighted 
arithmetic mean using the kernel execution cycles as weights. 
In the measurement of AVF we also take into consideration the 
sizes of every hardware structure as we explain below.  

The AVFkernel measurement exploits the features of gpuFI-
4, which supports fault injection in the GPU register file, the 
local memory, the shared memory, the L1 data/texture cache, 
and the L2 cache. It is calculated by dividing the sum of 
products, where each product is between the structure failure 
ratio (FRstructure) and its corresponding hardware structure size, 
by the size of all the previous hardware structures combined. 
The aforementioned structure failure ratio is calculated simply 
by dividing the number of fault injection experiments on a 
hardware component that results in any failure by the total 
number of injected faults. 

FRstructure = #"#$%&	()*+,&-.)/	%+#0-)1	&.	"#-%$2+
#3.&#%	"#$%&	()*+,&-.)/

 (1) 
  

AVFkernel =  
∑ "5!!	∈	{%&'()&('*} 	×	7-8+!

#3.&#%	7-8+
 (2) 

  

wAVF = 
∑ 9:"!!	∈	{,*'-*.} 	×	;<,%+/!

#3.&#%	,<,%+/	.=	#%%	#>>%-,#&-.)/
 (3) 

 
One of the main drawbacks of modeling with GPGPU-sim 

(also mentioned in [15]), is that each thread of a kernel con-
structs and accesses its own register file and doesn’t reserve a 
set of registers from a real physical register file that would be 
constructed once for each SM (this would have been a more 
convenient model for reliability assessment). Moreover, in 
GPGPU-sim each CTA that is assigned to an SM uses its own 
instance of shared memory and doesn’t occupy a subset of a 
unified shared memory within an SM (this would have been 
also a better model for injections). To overcome these two 
modeling issues of GPGPU-sim, in our analysis for the register 
file and the shared memory, we define a derating factor for 
each of these two structures: df_reg and df_smem. To estimate 
the final AVF of the register file and the shared memory, we 

must multiply each factor with the relative percentage of fail-
ures [15]. We take into consideration the dynamic alloca-
tion/deallocation of each thread of a kernel and as a result the 
dynamic allocation/deallocation of CTAs. That means that the 
number of running threads and CTAs in an SM are not fixed or 
stay the same throughout the execution of a kernel. That being 
said, for the running number of threads and CTAs in an SM, 
we get their mean values instead. 

The df_reg is an intuitive quantification of the fraction of a 
GPU physical register file that we can target in a given cycle 
during the execution of a given kernel (therefore the remaining 
area of the register file in not vulnerable). It depends on:  

• #REGS_PER_THREAD: the number of registers that 
a thread uses during the execution of a kernel, 

• #THREADS_MEAN: the mean number of running 
threads in an SM during the execution of a given kernel, 

• #REGFILE_SIZE_SM: the number of registers in the 
register file of an SM.   

df_reg = #5?@7_B?5_3C5?9D	E	#3C5?9D7_F?9G
#5?@"(H?_7(I?_7F

 

The df_smem is an intuitive quantification of the fraction of 
shared memory that we can target in a given cycle during the 
execution of a given kernel (therefore the remaining area of the 
shared memory in not vulnerable). It depends on: 

• #CTA_SMEM_SIZE: the size of shared memory that 
is used by a CTA of a kernel, 

• #CTAS_MEAN: the mean number of running CTAs in 
an SM during the execution of a given kernel,  

• #SMEM_SIZE: shared memory size in an SM in bits. 

df_smem = #;39_7F?F_7(I?	E	#;397_F?9G
#7F?F_7(I?

 

B. Fault Effects & Benchmarks 
The fault injection campaign can be easily executed by 

simply running the bash script. The script eventually will go on 
a loop (until it reaches #RUNS cycles), where each cycle will 
modify the framework’s new parameters at gpgpusim.config 
file before executing the application. Since our tool is 
implemented on top of GPGPU-Sim 4.0, the steps of setting up 
the backend are the same as setting up the GPGPU-Sim 4.0 and 
can be found in [16]. 

After completion of every batch of fault injections, a parser 
post-processes the output of the experiments one by one and 
aggregates the results. The final results are printed when all the 
batches have finished and the script quits. The parser classifies 
the fault effects of each experiment as Masked, Silent Data 
Corruption (SDC), Crash, Timeout, or Performance. Such fault 
effects are used in several injection-based studies. 

Masked: The application runs until the end and the result is 
identical to that of a fault-free execution.  

Silent Data Corruption (SDC): The behavior of an 
application with these types of faults is the same as with 
masked faults but the application’s result is incorrect. Such 
faults are the more severe as they occur without any indication 



 

that a fault has been recorded (an abnormal event such as an 
exception, etc.). 

Crash: In this case, an error is recorded and the application 
reaches an abnormal state without the ability to recover. 

Timeout: The simulation did not finish within a certain 
amount of time, equal to two times the fault-free execution 
time.  

Additionally, we use the term “Performance” as a fault 
effect which is nothing but a Masked fault effect, but the total 
cycles of the application are different from the fault-free 
execution. We do not consider the Performance fault effect in 
our AVF results, since they do not affect functionality. 

In the context of our reliability evaluation, we use a set of 
12 different applications from Rodinia benchmark suite [25] 
and from Nvidia CUDA SDK [26]. These benchmarks are: Hot 
Spot (HS), K-Means (KM), Speckle Reducing Anisotropic Dif-
fusion v1 and v2 (SRAD1 and SRAD2), Lower Upper Decom-
position (LUD), Breadth-First Search (BFS), Pathfinder 
(PATHF), Needleman-Wunsch (NW), Gaussian Elimination 
(GE), Backpropagation (BP), Vector Addition (VA), Scalar 
Product (SP). 

VI. EXPERIMENTAL EVALUATION 
In this section, we discuss how gpuFI-4 is used and we pre-

sent the results of an extensive reliability and performance 
evaluation for all applications listed above.  

A. Experimental Evaluation Methodology 
To inject faults on a kernel, we consider all its invocations 

together (i.e., all dynamic instances of a static kernel); other-
wise, it would be extremely time consuming to examine every 
invocation individually. This was possible by creating the input 
cycle file to match the cycles of all the invocations of the ker-
nel. We also had to provide as an input, the SIMT cores that all 
the invocations use so we know which L1 caches we need to 
target. In general, for every static kernel of an application we 
performed an injection campaign on every supported hardware 
structure. Every injection campaign (either for single-bit or 
triple-bit faults) is performed using 3,000 application execu-
tions, in which either a single-bit or triple-bit are flipped on 
each execution. This number comes from the formula of [7] 
and results in a statistically significant number of fault injec-

tion with confidence level 99% and error margin less than 2%. 
Table V shows the microarchitectural parameters of each Nvid-
ia card employed in the study. 

There are some important aspects relevant to our 
experiments worth mentioning at this point. Firstly, even 
though commercial Nvidia GPU chips incorporate ECC 
protection the GPGPU-Sim does not model it and thus our 
tools allows a complete investigation of the reliability of a 
completely unprotected GPU chip. Secondly, we had to use 
SM compute capability < 2.0 since the simulator did not 
support the PTXPlus mode otherwise. In future work, we will 
investigate the case of employing the tracing capabilities of 
AccelSim [27] in our injector so that newer SASS versions can 
be used. 

B. Fault Effects Breakdown of the Register File 
In GPUs, the register file is the largest storage component, 

and thus, the most critical one regarding the vulnerability. Fig. 
1 presents the detailed AVF results for the register file of all 
three cards we use in this study and for twelve different 
benchmarks. In  Fig. 1, we can see not only the total vulnera-

TABLE V. MICROARCHITECTURAL PARAMETERS FOR RTX 2060, 
QUADRO GV100, AND GTX TITAN. 

 RTX 2060 Quadro 
GV100 

GTX 
Titan 

SMs 30 80 14 
Warp size 32 32 32 

Maximum Threads per SM 1024 2048 2048 
Maximum CTAs per SM 32 32 16 

Registers per SM 
(size per register: 4 bytes) 65536 65536 65536 

Shared Memory per SM 64 KB 96 KB 48 ΚΒ 

L1 data cache size per SM 64 KB 32 KB N/A 
67.56 KB* 33.78 KB* N/A 

L1 texture cache size per SM 
128 KB 128 KB 48 KB 
135.13 
KB* 

135.13 
KB* 50.67 KB* 

L1 instruction cache per SM 
128 KB 128 KB 4 KB 
135.13 
KB* 

135.13 
KB* 4.22 KB* 

L1 constant cache per SM 64 KB 64 KB 12 KB 
71.13 KB* 71.13 KB* 17.78 KB* 

L2 cache size 3 MB 6 MB 1.5 MB 
3.17 MB* 6.33 MB* 1.58 MB* 

* With 57 tag bits per cache line  
 

Fig. 1. Fault effects breakdown of register file for all three cards (RTX 2060, Quadro GV100, and GTX Titan), for all twelve benchmarks. 
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bility of each benchmark for each card, but also breakdown in 
the four different fault effect classes, which is very important 
since hardware architects can take the appropriate decisions 
about the protection schemes depending on the fault effects. 
Specifically, in this graph we can see that the dominant fault 
effect class for all the benchmarks and GPU generations is the 
SDC. There are also some benchmarks (HS, KM, LUD, 
PATHF, NW, and SP) which show a great number of 
Timeouts, however, Crashes are practically zero in most cases.  

Another observation is that the AVF differences among dif-
ferent GPU generations are very small in most cases. This 
means that most applications are very sensitive to transient 
faults, and the sensitivity range to these faults primarily de-
pends on the behavior of the application. For example, as we 
can see in Fig. 1, the BP benchmark shows nearly zero vulner-
ability of the register file for all GPUs, while on the other hand, 
KM benchmark is consistently the benchmark with the highest 
vulnerability in all chips. We also present the individual struc-
tures vulnerability breakdown on the total program’s vulnera-
bility, for two benchmarks. Fig. 2 shows the contribution of the 
different hardware structures on the total AVF for SRAD2 and 
HS benchmarks. Each piece of the pies is the AVF portion of 
the overall benchmark AVF that is attributed to each structure. 

C. AVF Results for each GPU generation 
Fig. 3 presents the weighted AVF (wAVF) and the occu-

pancy (red dots) of each workload for the three GPU 
generations used in this study. The wAVF is calculated based 
on equation (3) discussed in the previous section. The average 
warp occupancy shows the ratio of active warps to the 
maximum number of warps supported on a multiprocessor of 
the GPU. We collect the warp occupancy from the GPGPU-
Sim output of every static kernel, and when there are multiple 
invocations of a static kernel with different number of threads, 
we calculate it as a mean value. Afterwards, to compute the 
average warp occupancy of an application we weight the warp 
occupancy with the ratio of the static kernel’s cycles over the 
application’s cycles and then add the individual weighted warp 
occupancies of all static kernels. 

Naturally, as Fig. 3 shows, different benchmarks have dif-
ferent AVF values. However, the vulnerability trends of the 
benchmarks among different GPU generations are virtually the 
same. For example, the SP benchmark is more vulnerable than 
VA and BP in all three GPUs in our study. Another important 
observation, which applies to all GPUs, is that benchmarks 

with higher occupancy tend to show higher vulnerabilities. For 
example, the SRAD2 shows increased occupancy compared to 
SRAD1, which has increased occupancy compared to KM. The 
same trend applies for their vulnerabilities. Of course, this 
trend applies for most of the benchmarks, but not for all 
benchmark combinations. 

D. Performance Fault Effect 
Faults in a GPU hardware structure can be masked either at 

the microarchitecture level or at the software level, and thus, 
the fault will not affect the execution of the application. How-
ever, there are also faults, which do not affect the functionality 
of the program, but can result in performance degradation. The 
reason in such a case is because the fault can affect the pro-
gram’s execution flow only. gpuFI-4 can reveal such kind of 
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Fig. 2. Breakdown of the hardware structures contribution on the total 
vulnerability (AVF) for two different benchmarks. 

Fig. 3. Total GPU chip AVF results for (a) RTX 2060, (b) Quadro 
GV100, and (c) GTX Titan, for all benchmarks used in this study, for 
single-bit faults. The red dots in the graphs present the occupancy for 
each different GPU generation and for each different workload. 
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fault effect in GPUs, which only a microarchitecture-level reli-
ability evaluation framework like gpuFI-4 can evaluate with 
high accuracy. Fig. 4 shows the magnitude of Performance 
fault effects on each application for RTX 2060. It is clearly 
shown in Fig. 4, that the Performance fault magnitude can be 
as high as 8.6% of the total masked faults (i.e., faults that do 
not affect the functionality), while on average it can be nearly 
4% for all applications. The same observation is also valid for 
the other two GPU cards used in this study; however, we omit 
the graphs due to space limitations. Specifically, for Quadro 
GV100, the Performance fault effect can be as high as 16.2%, 
while for GTX Titan it can be as high as 12.2%. 

E. Single-bit Flip vs. Triple-bit-Flip 
As we discussed earlier, the proposed microarchitecture-

level framework for GPUs can accurately evaluate the vulnera-
bility of applications on any modern GPU architecture, not 
only for single-bit faults, but also for multiple bit faults. Recent 
studies have shown that although multiple-bit faults (e.g., dou-
ble-bit, triple-bit, and so on) can show relatively small vulnera-
bility difference compared to the single-bit faults, their contri-
bution is very important for assessing the hardware reliability 
to soft errors [28] [29]. The reason is that in most modern mi-
croarchitectures, in which the technology nodes are gradually 
reduced, the probability of a multi-bit fault to affect the pro-
gram’s execution is continuously grown. Thus, it is essential to 
study not only single-bit faults, but also multiple-bit faults. To 
this end, in Fig. 5 we present the breakdown of fault effects of 
triple-bit faults in RTX 2060. As shown in Fig. 5, the trends 
among different fault effects for each benchmark is consistent-
ly the same between single-bit faults (see Fig. 1) and triple-bit 
faults (see Fig. 5) for RTX 2060. 

To demonstrate the validity of evaluation results of gpuFI-
4, we also present in Fig. 6 a comparison between single-bit 
and triple-bit fault injections for RTX 2060. As shown in Fig. 
6, the AVF of triple-bit faults is around two times the AVF of 
single-bit faults in most of the benchmarks. The tool can be 
used for any other cardinality of transient faults; we show the 
comparison between single-bit and triple-bit so that differences 
are more visible. 

F. Failure in Time (FIT) Rates 
Failures in Time (FIT) rate of a device estimates the num-

ber of failures that can be expected in one billion (109) device-
hours of operation. For each hardware structure of a micropro-
cessor, a different FIT is computed using the formula in equa-
tion below.  

FITstruct = AVFstruct × raw FITbit × #Bitsstruct 

The FIT of the structure depends on three parameters: (1) 
the FITbit (or raw FIT) rate, which is determined by the fabrica-
tion technology and the operational conditions and expresses 
the fault probability of a single bit, (2) the number of bits of the 
structure, and (3) the AVF of the structure, which is affected by 
the microarchitecture and the executed workload. The raw FIT 
rate expresses the rate of transient faults introduced in the 
component, while the AVF is the derating factor that quantifies 
how many of these bit upsets will lead to a failure. The product 
provides the FIT rate of a particular hardware structure. The 
FIT rate of the entire GPU is calculated by adding the individ-
ual FITs of the structures. For the calculation of the FIT, we 
use the raw FIT rate per bit for each GPU card, as described in 
[21] [30] [31]. Specifically, the raw FIR rate for RTX 2060 and 
Quadro GV100 (which are fabricated at 12nm) is 1.8 x 10-6 and 
for GTX Titan (which is fabricated at 28nm) is 1.2 x 10-5. Fig. 
7 shows the FIT rates for all GPU generations and benchmarks 
used in this study. For most of the benchmarks we can see that 
the older the GPU is, the larger the overall FIT values. This is 
expected, since older GPU generations (i.e., GTX Titan) were 
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Fig. 5. Fault effect breakdown for triple-bit faults in RTX 2060. 
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fabricated in higher technology (e.g., 28nm for GTX Titan, and 
12nm for RTX 2060 and Quadro GV100), and thus, the raw 
FIT rates are significantly higher than the newer ones. 

VII. CONCLUSION 
In this paper, we presented gpuFI-4, a detailed fault injec-

tion framework built on top of a state-of-the-art microarchitec-
tural simulator of GPGPU architectures, GPGPU-sim 4.0. 
High-throughput, comprehensive injection campaigns for sin-
gle and multiple transient faults on one or more of the critical 
hardware components of a GPU are supported by this fully 
parameterized framework. The supported hardware compo-
nents are the register file, the local and shared memory, the L1 
data and texture cache, and the L2 cache. Using 12 different 
CUDA programs, we performed a complete reliability test of 
the target hardware components, thus estimating the Architec-
tural Vulnerability Factor (AVF) of a GPU. Our study reveals 
significant diverging behaviors on the results of fault injections 
on different workloads as well as on different hardware capa-
bilities by comparing the results between GPU cards: RTX 
2060, Quadro GV100, and GTX Titan. The framework can be 
used for differential studies on the reliability of hardware com-
ponents running any CUDA workload and support early design 
decisions for fault protection mechanisms. gpuFI-4 is publicly 
available at https://github.com/caldi-uoa/gpuFI-4. 
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