
MeRLiN: Exploiting Dynamic Instruction Behavior for Fast and
Accurate Microarchitecture Level Reliability Assessment

 Manolis Kaliorakis Dimitris Gizopoulos Ramon Canal Antonio Gonzalez

Department of Informatics & Telecommunications

University of Athens, Greece

{manoliskal, dgizop}@di.uoa.gr

Computer Architecture Department

Universitat Politecnica de Catalunya, Spain

{rcanal, antonio}@ac.upc.edu

ABSTRACT@
Early reliability assessment of hardware structures using

microarchitecture level simulators can effectively guide

major error protection decisions in microprocessor design.

Statistical fault injection on microarchitectural structures

modeled in performance simulators is an accurate method

to measure their Architectural Vulnerability Factor (AVF)

but requires excessively long campaigns to obtain high sta-

tistical significance.

We propose MeRLiN1, a methodology to boost microar-

chitecture level injection-based reliability assessment by

several orders of magnitude and keep the accuracy of the

assessment unaffected even for large injection campaigns

with very high statistical significance. The core of MeRLiN

is the grouping of faults of an initial list in equivalent clas-

ses. All faults in the same group target equivalent vulnera-

ble intervals of program execution ending up to the same

static instruction that reads the faulty entries. Faults in the

same group occur in different times and entries of a struc-

ture and it is extremely likely that they all have the same

effect in program execution; thus, fault injection is per-

formed only on a few representatives from each group.

We evaluate MeRLiN for different sizes of the physical

register file, the store queue and the first level data cache of

a contemporary microarchitecture running MiBench and

SPEC CPU2006 benchmarks. For all our experiments,

MeRLiN is from 2 to 3 orders of magnitude faster than an

extremely high statistical significant injection campaign,

reporting the same reliability measurements with negligible

loss of accuracy. Finally, we theoretically analyze MeR-

LiN’s statistical behavior to further justify its accuracy.

CCS CONCEPTS
• Computer systems organization → Reliability

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permit-

ted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permis-

sions@acm.org.

ISCA '17, June 24-28, 2017, Toronto, ON, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4892-8/17/06...$15.00

http://dx.doi.org/10.1145/3079856.3080225

KEYWORDS
Microarchitecture level reliability estimation, architectural

vulnerability factor, fault injection, transient faults

ACM Reference format:

M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez.

2017. MeRLiN: Exploiting Dynamic Instruction

Behavior for Fast and Accurate Microarchitecture Level

Reliability Assessment. In Proceedings of ISCA ’17,

Toronto, ON, Canada, June 24-28, 2017, 14 pages.

https://dx.doi.org/10.1145/3079856.3080225

1. INTRODUCTION1
Continuous miniaturization of transistors allows computer

architects to build more complex and efficient circuits in

terms of functionality and performance. However, these

chips become more and more susceptible to transient, in-

termittent and permanent faults due to external factors

(such as particle strikes), manufacturing defects or wear-out

phenomena [1, 2, 3, 4, 5].

Unavoidably, designers devote significant resources (ef-

fort, budget, circuit area) to ensure sufficient reliability lev-

els of the computing system before it is released to market.

Design decisions for detection, diagnosis, recovery and re-

pair of faults are always translated to performance, area and

power overheads. If such design decisions are guided by

inaccurate reliability assessments, they can lead to unneces-

sary and excessive costs for error protection [6]. Early but

also accurate reliability assessment is vital for optimal se-

lection among the available protection mechanisms.

The four more popular approaches to estimate the reli-

ability of hardware components are: RTL injection [7, 8, 9],

microarchitecture level injection [10, 11, 12, 13, 14], ACE

(Architecturally Correct Execution) analysis [15, 16, 17,

18] and probabilistic models [19, 20, 21, 22].

RTL injection allows very accurate studies of the fault

effects in all hardware structures but these studies are per-

formed too late in the design cycle to facilitate effective

decision-making for error protection. Moreover, RTL injec-

tion requires excessively long simulation time which pre-

vents detailed reliability evaluation of components with

1
 MeRLiN = Microarchitectural evaluation of Reliability using statisticaL

fault iNjection.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Kaliorakis et al.

statistically significant number of injections and large

workloads. Microarchitecture level injection, on the other

hand, is less detailed than RTL injection and is used for

accurate full-system studies of fault effects in early design

stages; it is orders of magnitude faster than RTL injection.

ACE analysis and probabilistic models are significant-

ly faster than the two injection methods because they re-

quire a single or few fault-free runs to report reliability es-

timations. They provide a very useful but conservative low-

er bound of the reliability (upper bound of the vulnerability)

of hardware components [9, 23, 24]. In particular, [23]

reports 7X and [9] reports 3X AVF over-estimation of ACE

analysis compared to fault injection. For example, [25] re-

ports about 30% AVF for the physical integer register file

of the out-of-order Alpha 21264 microprocessor with 80
registers using ACE analysis2; however, our comprehensive

injection campaign of 60,000 transient faults3 targeting the

same structure for the same benchmarks on the out-of-order

x86-64 microarchitecture in Gem5 measures only 2.56%,

4.81%, and 8.92% AVF for 256, 128 and 64 registers re-

spectively.4 Moreover, ACE analysis is not suitable to eval-

uate fault tolerant mechanisms that are based on soft error

symptoms, in contrast to microarchitecture level injection

[9, 27]. Despite of its disadvantages, ACE analysis merit in

early reliability assessments is indisputable because it gives

the opportunity to estimate the upper bound of vulnerability

for different design options (component sizes, policies, etc.)

in very short time.

Figure 1 reflects the motivation of our MeRLiN meth-

odology compared to the four aforementioned state-of-the-

art methods in terms of speed and measurement accuracy.

An ideal method at the top-right corner of the figure would

provide the highest speed (equal to that of the ACE analysis

and probabilistic models) and the highest accuracy (equal

to that of the injection methods with high statistical signifi-

cance). MeRLiN approaches the ideal method boosting mi-

croarchitecture level injection-based reliability assessment

while keeping its measurement accuracy unaffected. The

backbone of MeRLiN is built on two major observations:

 A large number of faults in a statistical fault injection

campaign are over-written before being read or are in-

jected in dead or invalid entries of the hardware struc-

ture [14]. These faults can be easily identified and

pruned from the initial fault list in a single run. We call

this first part of our method ACE-like.

 The faults that are injected in the same or different en-

tries of a structure during the same or different vulnera-

2 Our ACE-like analysis corroborates this and reports about 25% AVF for a

register file of 80 registers for the same benchmarks.
3 This population of faults corresponds to an extremely low error margin

(0.63%) and an extremely high confidence level (99.8%); see [26].
4 For more details see Section 4. For 80 registers the injection-based AVF

measurement is about 6%.

ble intervals are very likely to have the same effect on

program execution if these intervals end up to the same

static instruction and the same micro-operation (uop)

that reads the faulty entry. MeRLiN groups these faults

together and performs fault injection on a small number

of representatives. While it preserves the accuracy of the

reliability measurements, this grouping drastically re-

duces the number of required injections because instruc-

tion repetition is an extensively inherent property of all

programs [28, 29, 30, 31].

s
p

e
e

d
accuracy

RTL injection

Microarchitecture level

injection

MeRLiN

Ideal methodACE analysis

Probabilistic

models

Figure 1: Reliability estimation methods: speed and accuracy.

Microarchitecture level, full-system simulators have

been used for early assessment of the soft error vulnerability

of hardware structures (register files, buffers, queues, cach-

es etc.) that occupy the majority of the chip's area [10, 13,

32, 33, 34]. We implement and evaluate MeRLiN on a

state-of-the-art microarchitecture level fault injector [12]

[13] built on Gem5 [35]. MeRLiN's contributions are:

 It accelerates statistical microarchitecture level fault

injection from 2 to 3 orders of magnitude. Our experi-

ments with full runs of 10 MiBench benchmarks show

93X, 225X and 68X speedup on average for different

sizes of the register file, the store queue and the first

level data cache, respectively. When applied to 10

SPEC CPU2006 benchmarks, MeRLiN reveals larger

average speedups of 1644X, 2018X and 171X for the

register file, the store queue and the first level data

cache, respectively.

 It reports virtually the same reliability estimations as

conventional microarchitectural fault injection with ex-

tremely high statistical significance.

 It delivers fine-grained insights of the fault effects (Si-

lent Data Corruptions-SDC, Detected Unrecoverable

Errors-DUE, crashes, locks) unlike ACE analysis which

only reports a gross AVF estimate. This can be used to

evaluate different protection schemes or to identify

benchmarks more prone to SDCs [27, 36].

2. RELATED WORK
Lifetime analysis has been previously used in several relia-

bility-related studies. The method of [37] uses execution

intervals sampling for reliability evaluation of caches. In

MeRLiN ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

[38, 39], the authors separate the Hardware Vulnerability

Factor (HVF) from the Program Vulnerability Factor

(PVF), while [40] focuses on on-line vulnerability estima-

tion and [25] aims to develop stressmarks to measure the

maximum vulnerability of hardware structures to soft er-

rors. The methods in [41, 42, 43, 44] use lifetime analysis

to support decision-making for error protection.

Relyzer [45] aims to evaluate the effectiveness of soft-

ware symptom-based error detection techniques and to

identify all the SDCs [46, 47]. Relyzer injects faults only at

the software level (architectural registers and output of

load/store address generation units), without considering

microarchitecture level masking and its features (flushes,

store forwarding, dead instructions, cache write backs etc.)

which our method fully supports. Relyzer comprehensively

measures the application resiliency or, equivalently, reports

the PVF portion [38] of the AVF. On the other hand, MeR-

LiN considers both the microarchitecture and the software

masking and injects faults in the actual bits of any hard-

ware structure at any cycle of the program execution; thus

it reports the complete AVF including both the HVF and

the PVF dimensions. Unlike Relyzer, MeRLiN:

 Reports the vulnerability of all microarchitectural struc-

tures modeled in performance simulators (physical reg-

ister file, ROB, LSQ, predictors, caches, TLBs, etc.) and

the vulnerability of the entire CPU. Relyzer focuses only

on software resilience to faults.

 Reports the vulnerability of instruction related struc-

tures (L1 Instruction cache, fetch queue, trace cache,

etc.). Relyzer only studies faults that reach data fields of

the software.

 Can be used in early design stages to guide reliability

design decisions concerning several microarchitectural

features (components sizes, policies, etc.) or the use of

several hardware and software protection mechanisms;

Relyzer is limited to software symptom-based detectors.

GangES [48] is a follow-up study of [45] that acceler-

ates injections at the software layer monitoring the inter-

mediate execution state of each run. Finally, [12] is orthog-

onal to MeRLiN and can be combined with it, as it acceler-

ates the individual microarchitectural injection runs at

runtime without pruning the initial fault list.

3. MeRLiN METHODOLOGY
Our methodology consists of three phases: Preprocessing,

Fault List Reduction and Fault Injection Campaign as

shown in Figure 2. We describe the three phases in the fol-

lowing subsections.

3.1 Preprocessing

This first phase includes two tasks. First, MeRLiN records

all vulnerable intervals of all entries of a hardware structure

during the entire benchmark execution; this is the ACE-like

analysis step. Then, MeRLiN creates the initial fault list

repository that consists of a large number of faults for a

statistically significant sampling: very low error margin

and very high confidence level [26].

3.1.1 ACE-like analysis

During this first task, the benchmark runs once to comple-

tion to profile the vulnerable intervals (in which a bit flip

may lead to corruption) of each entry of the target hardware

structure (e.g. the registers in a physical register file). For

our analysis, a vulnerable interval of an entry:

 Starts with a write operation and ends with a committed

read of the same entry;

 Starts with a committed read and ends with another

committed read of the same entry.

benchmark configuration param.
• number of entries

• execution time

• error margin

• confidence level

ACE-like analysis

initial fault list

1st step: Grouping according to

RIP and uPC

group Ngroup 1 group 2 group 3
. . .

2nd step: Grouping according to byte position

reliability estimation

Preprocessing

Fault

List Reduction

Fault

Injection

Campaign

vulnerable intervals

groupMgroup 1 group 2 group 3 . . .

fault injection & parsing

reduced fault list

Figure 2: Flowchart of MeRLiN.

This definition differs from the typical definition of

ACE intervals [15, 17] (where intermediate reads do not

define the end of an interval) but the overall vulnerable

time (sum of vulnerable intervals) is the same. Note that,

similar to the original ACE analysis wrong-path execution

instructions are not considered as part of the vulnerable

intervals of MeRLiN. We highlight this difference between

the two methods by an example in Figure 3, which repre-

sents the lifetime of an entry during the execution of a

benchmark. The arrows directed upwards and downwards

represent read and write operations, respectively. The read

operations at t2, t5 and t6 are finally squashed. MeRLiN

divides the interval between t7 and t9 in two individual

vulnerable intervals, while ACE analysis considers them as

a single interval.

This difference between MeRLiN’s first step and classic

ACE analysis is very important for the second phase of

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Kaliorakis et al.

MeRLiN, where the faults are grouped with respect to the

instruction pointer (RIP) and the micro program counter

(uPC) of the committed read that accesses the entry at the

end of the vulnerable interval. Our analysis requires both

the RIP and the uPC to cover cases where an x86-64 in-

struction consists of different micro-instructions that access

the same or different entries of the hardware structure in

the same or different cycles. These accesses can lead to

different fault effects and are classified separately.

Our ACE-like analysis is significantly lighter in terms

of storage overhead (10-100MB in our experiments) and

more easily implemented than the complete ACE, because

it does not trace the transitively dynamically dead (TDD)

instructions [15]. The execution time of the ACE-like sin-

gle-run step was less than 5 hours for all our experiments.

At the end of this step, the following information is

stored in the vulnerable intervals repository for every ACE-

like vulnerable interval of each entry: (i) start and end of

the interval (cycle numbers), (ii) the instruction pointer

(RIP) of the static x86-64 instruction that reads an entry at

the end of the interval, and (iii) the micro program counter

(uPC) of the micro-operation which is part of the x86 in-

struction and reads an entry at the end of the interval.

t1 t2 t3 t4 t5 t6 t7 t8 t9

squashedACE interval ACE interval

MeRLiN’s ACE-like

interval

time

MeRLiN’s ACE-like

interval

MeRLiN’s ACE-like

interval

Figure 3: ACE and ACE-like intervals definition example.

3.1.2 Initial Fault List Creation

In the second task of the first phase, MeRLiN creates the

initial fault list repository according to the statistical sam-

pling described in [26]. The initial faults population is de-

fined by: (1) the size (in bits) of the hardware structure, (2)

the total execution time (in cycles) of the benchmark, (3)

the statistical confidence level and (4) the statistical error

margin. To achieve high statistical significance, the initial

fault list should consist of tens or hundreds of thousands of

faults. For instance, an injection campaign targeting a 256-

entry integer register file of 64-bit registers with error mar-

gin 2.88%, confidence level 99% and 100M cycles of pro-

gram execution time, requires 2000 fault injection runs

[26]. If a higher statistical significance is needed (i.e.

0.63% error margin and 99.8% confidence level), the total

number of injection runs explodes to 60,000 (an unaccepta-

bly large number of injections even for relatively short

benchmarks). We use this number of 60K faults to define

the baseline injection campaign for each single component,

size and benchmark configuration, ensuring the same or

even slightly higher statistical significance for all our struc-

tures. According to [26], for estimations of high statistical

significance the confidence level and the error margin dom-

inate in the calculation of the initial fault list population.

The outputs of the first phase of MeRLiN are the vul-

nerable intervals repository and the initial fault list that

feed MeRLiN’s second phase.

3.2 Fault List Reduction

This phase of MeRLiN classifies the faults in groups run-

ning a two-step grouping algorithm, and creates the re-

duced fault list that is used for the actual injections.

3.2.1 1st step of group creation algorithm

During the execution of the first step of the algorithm, all

faults of the initial fault list are examined. All faults that

target a non-vulnerable interval are directly classified as

Masked as no injection is needed for them. The remaining

faults that hit ACE-like vulnerable intervals are stored in

different subdirectories (see Figure 2) according to the RIP

and the uPC of the instruction that reads the entry at the

end of the interval. Each of the created groups consists of

transient faults on the same or different entries of the

hardware structure being analyzed, during the same or dif-

ferent ACE-like vulnerable intervals that are read by an

instruction with the same RIP and the same uPC.

Figure 4 shows an informative example of this first step

for three entries of a hardware component during the exe-

cution of the same benchmark. When this step finishes,

four groups are created containing faults that hit different

hardware entries at different time intervals. The faults with

the same color belong to the same group. The faults belong-

ing to non-vulnerable intervals (gray color) are character-

ized as Masked. For instance, the faults in intervals t4-t6,

t10-t13 and t7-t11 are grouped together (red color), because

these intervals end up to micro-instructions with the same

ripC and uPC3.

t1 t2e
n

tr
y
A

e
n

tr
y
B

t3e
n

tr
y
C

t4

t9 t10 t13

t6 t8 t12

t5 t7 t11

group 1

group 1

group 1

group 2

group 2

group 3

group 4

rip A

uPC 0
rip D

uPC 3
rip C

uPC 3

rip C

uPC 3

rip A

uPC 0

rip B

uPC 1
rip C

uPC 3

time

Figure 4: 1
st
 step example of the grouping algorithm.

3.2.2 2nd step of group creation algorithm

Due to logical masking, all bits in a given faulty entry may

not have the same effect when read by an instruction. To

MeRLiN ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

maximize MeRLiN’s accuracy especially for groups with

hundreds of faults, we select more than one fault for the

actual fault injection runs in cases that faults hit a different

byte of the entry. Moreover, faults in different bytes are

selected from different dynamic instances of the same static

instruction to increase time diversity. This can be further

extended to separate faults hitting different nibbles or bits,

but our experiments verify that this is not necessary.

MeRLiN ensures that for static instructions that are cor-

related with large population of faults, several representa-

tives are selected from different dynamic instances of the

same instruction, covering all possible byte positions of

different entries. This per byte selection leads to smaller

final groups ensuring the statistical significance of MeRLiN

(see the theoretical analysis in Section 4.4.5), while it leads

to groups of faults that are extremely likely to have the

same effect. Figure 5 shows an example of the second step

of the algorithm for three different hardware entries (K, L,

M) during the execution of a benchmark. Note that all these

faults were classified in the same group (same rip=F and

uPC=4) from the first step of the grouping algorithm. The

number next to each fault corresponds to the group in

which the fault is finally classified at the end of the second

step; the faults in circles are stored in the reduced fault list

repository and are the only ones that will be injected. The

execution time of the entire MeRLiN’s single-run group

creation algorithm was less than 50 minutes for all our

experiments.

At the end of this phase, the reduced fault list repository

contains all the selected faults. Only these faults are inject-

ed using the microarchitecture level fault injector.

bytes

b7

4

3

2

3

1 1

5

4

3

1 1

6

5

4

2

b6

b5

b4

b3

b2

b1

b0

66

time
entry K, rip F, uPC 4 entry L, rip F, uPC 4 entry M, rip F, uPC 4

Figure 5: 2

nd
 step example of the grouping algorithm.

3.3 Fault Injection Campaign

In the last phase of MeRLiN, the fault injection campaign

is launched using all faults of the reduced fault list reposi-

tory. During the parsing step, the outputs of all the injec-

tion runs per reduced group are compared to that of the

golden run to identify the fault effect and calculate the final

reliability estimation of the structure.

4. MeRLiN EVALUATION

4.1 Microarchitecture level fault injector – GeFIN

We employ GeFIN [13] a Gem5-based [35] microarchitec-

tural injector and extend it to implement and evaluate

MeRLiN on three structures of an x86-64 out-of-order pro-

cessor:

 The physical integer Register File (RF) for three sizes:

256, 128, 64 registers.

 The data field of the Store Queue (SQ) of the

Load/Store Queue for three sizes: 64 load and 64 store,

32 load and 32 store, and 16 load and 16 store entries.

Gem5 doesn’t implement data fields in the Load Queue.

 The data field of L1 data cache (L1D) for three sizes:

64KB, 32KB and 16KB.

MeRLiN can be used for: (i) all hardware structures of

the CPU (caches, buffers, queues, registers, etc.), (ii) differ-

ent input sets and benchmarks, (iii) different architectures

and ISAs.

4.1.1 Configuration

Table 1 shows the baseline microprocessor configuration of

our experiments. For all the experiments, we used ma-

chines with Intel Core i7-4771 at 3.5GHz, 16GBytes of

RAM at 1600MHz and 1TByte hard disk.
Table 1: Baseline microprocessor configuration.

Parameter x86 microprocessor model configuration

Pipeline OoO

Physical register file 256/128/64 int; 192 FP

Issue Queue entries 32

Load/Store Queue 64/32/16 load & 64/32/16 store entries

ROB entries 100

Functional units
6 int ALUs; 2 complex int ALUs; 4 FP ALUs, 2

FP mul/div, 4 SIMD

L1 Instruction Cache 32KB,64B line,128 sets,4-way,write back

L1 Data Cache
16KB/32KB/64KB,

64B line,64/128/256 sets,4-ways,write back

L2 Cache 1MB,64B line,1024 sets,16-way,write back

Branch Predictor Tournament predictor

Branch Target Buffer
conditional and unconditional branches BTB

(direct-mapped, 4K entries)

4.1.2 Fault effect classification

For each injection run, we classify the fault effect in one of

the six categories shown in Table 2.
Table 2: Fault effect classification.
Category Effect

Masked Output and x86 exceptions were identical to the golden run

SDC
The output is corrupted, but there was no abnormal behavior

of the simulation process or the x86 exceptions

DUE
Simulation process and output are not corrupted, but there

were indications of extra x86 exceptions

Timeout

Includes program flow Deadlocks (not committing further

instructions) and Livelocks (redirected but continuing to

commit instructions) that exceed execution time

of benchmarks by three times

Crash

Includes process (abnormal termination of simulated pro-

gram), system (full-system is unable to recover) and simulator

(simulator process terminated abnormally) crashes

Assert Simulator stopped due to assert instruction

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Kaliorakis et al.

4.2 Fault Sampling

An exhaustive fault list at the microarchitecture level con-

sists of all flips for every bit of a hardware structure and for

every program execution cycle. At the software the same

list consists of bit flips in the operands of the assembly in-

structions; these faults are not correlated to the execution

time of the program and the actual bits of the hardware.

Table 3 presents a high-level quantitative comparison of

Relyzer [45] and MeRLiN using as starting point the ex-

haustive fault list of the corresponding level of abstraction

(first column). The second column shows the faults of the

exhaustive list that remain for injection after the applica-

tion of each method, and the third column presents the

gains (speedup) in terms of fault list reduction achieved by

each method over the corresponding exhaustive list. The

last two columns show the time needed to inject the exhaus-

tive list and the remaining faults in both methods, respec-

tively. Assume that we run one benchmark of 1 billion cy-

cles and we inject faults in the L1D (32KB), the SQ (16

entries) and the RF (64 registers). The throughput of Gem5

for full-system cycle-accurate simulation is 105 cycles/sec

while for software emulation it is 106 cycles/sec [35]. MeR-

LiN delivers 5 orders of magnitude higher gains than Re-

lyzer having as starting point the exhaustive list, while it

reports the reliability of the exhaustive list 10 orders of

magnitude faster.
Table 3: MeRLiN vs. Relyzer using exhaustive fault list.

Exhaustive

fault list

 Remaining

faults
 Gain

Evaluation

time using

exhaustive

fault list

Evaluation

time using

remaining

faults

MeRLiN 10
13

 10
3
 10

10
 ~3×10

9
 years 4 months

Relyzer [45] 10
11

10
6
 10

5
 ~3×10

6
 years 32 years

Statistical fault sampling is unavoidable due to the huge

number of faults in the exhaustive fault list. Thus, the ini-

tial fault list for each campaign of this paper was generated

using statistical fault sampling [26] (Section 3.1.2) and

consists of 60,000 faults (99.8% confidence level and

0.63% error margin). To study the scalability of MeRLiN

(Section 4.4.2.4), we used an initial fault list of 600,000

faults (99.8% confidence level and 0.19% error margin).

4.3 Benchmarks

We employ 10 benchmarks from the MiBench suite [49]

and 10 from the SPEC CPU2006 suite. We ran the

MiBench benchmarks to the end to evaluate both MeR-

LiN’s accuracy and speedup. Their execution time ranges

from 1 to 55 million cycles, while they are very similar in

instruction mixes and throughput with SPECs. Thus, they

have extensively been used in many reliability studies [13,

14, 23, 25, 50]. In the case of SPEC benchmarks, we evalu-

ate MeRLiN running Simpoint samples of 100M committed

instructions with the largest weight [51]. MeRLiN’s pur-

pose is not to propose new benchmark intervals sampling

approach for reliability evaluation, but any existing ap-

proach can be used (e.g. [37] for large caches or Simpoints

that were used in many reliability studies [15, 17, 19]).

We selected to evaluate MeRLiN’s accuracy executing

MiBench benchmarks till the end instead of running entire

SPEC benchmarks, because the execution time of each

baseline comprehensive injection campaign (60,000 faults

for each entire SPEC program, component and configura-

tion) would make the evaluation infeasible. Also, we evalu-

ated the accuracy of MeRLiN at the end of the Simpoint

intervals of two selected SPEC CPU2006 benchmarks

(bzip2 and gcc) (Section 4.4.3.4).

4.4 Results and Analysis

We evaluate MeRLiN in terms of reliability estimation ac-

curacy and speedup against the comprehensive campaign

and the ACE-like analysis. Then, we discuss Relyzer’s heu-

ristics if employed in MeRLiN’s concept. Finally, we ana-

lyze the statistical properties of MeRLiN.

4.4.1 Homogeneity of fault effects

First, to measure the effectiveness of our grouping algo-

rithm we define the homogeneity metric. In equation (1), N

is the number of the groups that MeRLiN generates and

#faults is the number of faults of a group. The dominant

class of a group is defined as the category among those of

Table 2 that contains the largest number of faults in the

group. Thus, dominant_class% is the percentage of faults of

the group that are classified in the dominant class. When

dominant_class% equals 100%, it means that all the faults

in that group have the same fault effect. Finally, #to-

tal_faults is the total population of faults that hit vulnerable

intervals. Large values of homogeneity close to 1.0, denote

that the vast majority of faults across all groups lead to the

same effect, and the accuracy of the algorithm is high.
groupN

group1

#faults × dominant _ class%

 =
#total_ faults × 100%

homogeneity

 (1)

Figure 6 shows the homogeneity for all our experiments

running the 10 MiBench. On the average, the highest ho-

mogeneity for the RF is 0.940, for the SQ is 0.982 and for

L1D is 0.920. In general, the homogeneity values are very

high for this fine-grained classification (the 6 classes). If

homogeneity is calculated in coarser granularity (masked

vs. not-masked faults) and all classes that lead to non-

masking are combined together, then homogeneity is even

larger; see the values at the top of each bar in Figure 7. In

Figure 7 the value at the bottom of each bar represents the

percentage of groups (average for all our experiments with

MiBench) that consist of faults with exactly the same effect

(masked, non-masked) meaning that they have a perfect

homogeneity value of 1.0. Finally, homogeneity climbs to

0.99 if we count the faults excluded by the ACE-like, but

here we focus only on MeRLiN’s grouping part. All these

results indicate the extremely high accuracy of MeRLiN.

MeRLiN ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

0
.9

3
0
.9

3
0
.9

2
0
.9

7
0
.9

2
0
.9

6
0
.9

3
0
.9

3
0
.9

6
0
.9

2
0
.9

4

0
.9

0
0
.9

0
0
.9

0
0
.9

6
0
.9

0
0
.9

5
0
.9

5
0
.9

2
0
.9

7
0
.9

5
0
.9

3

0
.9

4
0
.9

0
0
.9

2
0
.9

6
0
.9

6
0
.9

2
0
.9

5
0
.9

0
0
.9

5
0
.9

3
0
.9

3

0
.9

9
0
.9

9
0
.9

9
0
.9

9
0
.9

7 0
.9

9
0
.9

6 0
.9

8
0
.9

6
0
.9

9
0
.9

8

0
.9

9
0
.9

9
0
.9

8
0
.9

9
0
.9

7
0
.9

8
0
.9

5
0
.9

7
0
.9

4
0
.9

7
0
.9

7

0
.9

8
0
.9

6
0
.9

5 0
.9

7
0
.9

6
0
.9

8
0
.9

4
0
.9

7
0
.9

4
0
.9

7
0
.9

6

0
.9

0
0
.9

0
0
.9

5
0
.9

2
0
.8

8
0
.9

5
0
.9

4
0
.9

7
0
.8

8
0
.8

8
0
.9

2

0
.9

1
0
.8

9
0
.9

1
0
.8

9 0
.9

0
0
.9

6
0
.9

5
0
.9

6
0
.8

9
0
.8

9
0
.9

2

0
.8

9
0
.8

9
0
.9

2
0
.9

2
0
.9

0
0
.9

2 0
.9

4 0
.9

5
0
.8

9
0
.8

9 0
.9

1

0.80

0.85

0.90

0.95

1.00

s
u
s
a
n
_

c
 (

2
5
6
re

g
s
)

s
u
s
a
n
_

s
 (

2
5
6
re

g
s
)

s
u
s
a
n
_

e
 (

2
5

6
re

g
s
)

s
tr

in
g

s
e

a
rc

h
 (

2
5
6

re
g
s
)

d
jp

e
g
 (

2
5
6

re
g
s
)

 s
h
a

 (
2

5
6
re

g
s
)

ff
t

(2
5
6
re

g
s
)

q
s
o
rt

 (
2

5
6
re

g
s
)

c
jp

e
g
 (

2
5

6
re

g
s
)

c
a
e
s
 (

2
5

6
re

g
s
)

a
v
e
ra

g
e
 (

2
5

6
re

g
s
)

s
u
s
a
n
_

c
 (

1
2
8
re

g
s
)

s
u
s
a
n
_

s
 (

1
2
8
re

g
s
)

s
u
s
a
n
_

e
 (

1
2

8
re

g
s
)

s
tr

in
g

s
e

a
rc

h
 (

1
2
8

re
g
s
)

d
jp

e
g
 (

1
2
8

re
g
s
)

 s
h
a

 (
1

2
8
re

g
s
)

ff
t

(1
2
8
re

g
s
)

q
s
o
rt

 (
1

2
8
re

g
s
)

c
jp

e
g
 (

1
2

8
re

g
s
)

c
a
e
s
 (

2
5

6
re

g
s
)

a
v
e
ra

g
e
 (

1
2

8
re

g
s
)

s
u
s
a
n
_

c
 (

6
4
re

g
s
)

s
u
s
a
n
_

s
 (

6
4
re

g
s
)

s
u
s
a
n
_

e
 (

6
4

re
g
s
)

s
tr

in
g

s
e

a
rc

h
 (

6
4
re

g
s
)

d
jp

e
g
 (

6
4
re

g
s
)

 s
h
a

 (
6

4
re

g
s
)

ff
t

(6
4
re

g
s
)

q
s
o
rt

 (
6

4
re

g
s
)

c
jp

e
g
 (

6
4

re
g
s
)

c
a
e
s
 (

6
4

re
g
s
)

a
v
e
ra

g
e
 (

6
4

re
g
s
)

s
u
s
a
n
_

c
 (

6
4
e
n

tr
ie

s
)

s
u
s
a
n
_

s
 (

6
4
e
n

tr
ie

s
)

s
u
s
a
n
_

e
 (

6
4

e
n
tr

ie
s
)

s
tr

in
g

s
e

a
rc

h
 (

6
4
e

n
tr

ie
s
)

d
jp

e
g
 (

6
4
e

n
tr

ie
s
)

s
h
a
 (

6
4
e
n

tr
ie

s
)

ff
t

(6
4
e
n

tr
ie

s
)

q
s
o
rt

 (
6

4
e
n

tr
ie

s
)

c
jp

e
g
 (

6
4

e
n
tr

ie
s
)

c
a
e
s
 (

6
4

e
n
tr

ie
s
)

a
v
e
ra

g
e
 (

6
4

e
n
tr

ie
s
)

s
u
s
a
n
_

c
 (

3
2
e
n

tr
ie

s
)

s
u
s
a
n
_

s
 (

3
2
e
n

tr
ie

s
)

s
u
s
a
n
_

e
 (

3
2

e
n
tr

ie
s
)

s
tr

in
g

s
e

a
rc

h
 (

3
2
e

n
tr

ie
s
)

d
jp

e
g
 (

3
2
e

n
tr

ie
s
)

s
h
a
 (

3
2
e
n

tr
ie

s
)

ff
t

(3
2
e
n

tr
ie

s
)

q
s
o
rt

 (
3

2
e
n

tr
ie

s
)

c
jp

e
g
 (

3
2

e
n
tr

ie
s
)

c
a
e
s
 (

3
2

e
n
tr

ie
s
)

a
v
e
ra

g
e
 (

3
2

e
n
tr

ie
s
)

s
u
s
a
n
_

c
 (

1
6
e
n

tr
ie

s
)

s
u
s
a
n
_

s
 (

1
6
e
n

tr
ie

s
)

s
u
s
a
n
_

e
 (

1
6

e
n
tr

ie
s
)

s
tr

in
g

s
e

a
rc

h
 (

1
6
e

n
tr

ie
s
)

d
jp

e
g
 (

1
6
e

n
tr

ie
s
)

s
h
a
 (

1
6
e
n

tr
ie

s
)

ff
t

(1
6
e
n

tr
ie

s
)

q
s
o
rt

 (
1

6
e
n

tr
ie

s
)

c
jp

e
g
 (

1
6

e
n
tr

ie
s
)

c
a
e
s
 (

1
6

e
n
tr

ie
s
)

a
v
e
ra

g
e
 (

1
6

e
n
tr

ie
s
)

s
u
s
a
n
_

c
 (

6
4
K

B
)

s
u
s
a
n
_

s
 (

6
4
K

B
)

s
u
s
a
n
_

e
 (

6
4

K
B

)
s
tr

in
g

s
e

a
rc

h
 (

6
4
K

B
)

d
jp

e
g
 (

6
4
K

B
)

s
h
a
 (

6
4
K

B
)

ff
t

(6
4
K

B
)

q
s
o
rt

 (
6

4
K

B
)

c
jp

e
g
 (

6
4

K
B

)
c
a
e
s
 (

6
4

K
B

)
a
v
e
ra

g
e
 (

6
4

K
B

)

s
u
s
a
n
_

c
 (

3
2
K

B
)

s
u
s
a
n
_

s
 (

3
2
K

B
)

s
u
s
a
n
_

e
 (

3
2

K
B

)
s
tr

in
g

s
e

a
rc

h
 (

3
2
K

B
)

d
jp

e
g
 (

3
2
K

B
)

s
h
a
 (

3
2
K

B
)

ff
t

(3
2
K

B
)

q
s
o
rt

 (
3

2
K

B
)

c
jp

e
g
 (

3
2

K
B

)
c
a
e
s
 (

3
2

K
B

)
a
v
e
ra

g
e
 (

3
2

K
B

)

s
u
s
a
n
_

c
 (

1
6
K

B
)

s
u
s
a
n
_

s
 (

1
6
K

B
)

s
u
s
a
n
_

e
 (

1
6

K
B

)
s
tr

in
g

s
e

a
rc

h
 (

1
6
K

B
)

d
jp

e
g
 (

1
6
K

B
)

s
h
a
 (

1
6
K

B
)

ff
t

(1
6
K

B
)

q
s
o
rt

 (
1

6
K

B
)

c
jp

e
g
 (

1
6

K
B

)
c
a
e
s
 (

1
6

K
B

)
a
v
e
ra

g
e
 (

1
6

K
B

)

RF SQ L1 data cache

Homogeneity

0
.9

5
2

0
.9

5
3

0
.9

6
1

0
.9

8
3

0
.9

7
7

0
.9

7
3

0
.9

4
4

0
.9

4
2

0
.9

3
1

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

256regs 128regs 64regs 64entries 32entries 16entries 64KB 32KB 16KB

RF SQ L1D

Homogeneity using only masked and non-masked categories

90.8% 90.5% 90.3% 92.0% 90.7% 91.1% 88.4% 88.3% 89.1%

Figure 7: Coarse-grained homogeneity (top of bars) and per-

centage of groups with perfect homogeneity (equal to 1.0)

(bottom of bars); average for 10 MiBench.

4.4.2 Speedup

We evaluate the speedup of MeRLiN against the compre-

hensive baseline fault injection campaigns (60,000 faults).

4.4.2.1 MiBench benchmarks

Figure 8 presents the speedup of the method for 256, 128

and 64 physical registers for the 10 MiBench benchmarks.

The lower (blue) segment and the value on top of it indicate

the speedup compared to the comprehensive baseline injec-

tion method (60,000 faults) after the first ACE-like pass.

The higher (red) segment of each bar indicates the speedup

achieved by the grouping algorithm on top of the first ACE-

like step. The value on top of the red bar represents the

final speedup achieved by MeRLiN. For example, for 64

registers and the qsort benchmark the ACE-like step reduc-

es the initial fault list by 4.1X (60,000/14,757). The re-

maining 14,757 faults are further reduced by the grouping

algorithm to 1126 faults that should be actually injected;

this totally corresponds to 53.3X (60,000/1126) reduction

of the initial fault list. The average speedups are 93.1X,

62.1X and 43.7X for 256, 128 and 64 registers, respective-

ly. Similarly, Figure 9 and Figure 10 present the speedup

for the store queue and the data cache, respectively. The

average speedups for the store queue are 224.9X, 186.7X

and 146.9X for 64, 32 and 16 entries respectively, while for

the data cache they are 67.9X, 61.6X and 59.0X for 64KB,

32KB and 16KB respectively.

4.4.2.2 Actual Estimation Time running MiBench

Figure 11 depicts the actual time required for the fault in-

jection campaigns in the three structures with the compre-

hensive fault injection method (60,000 faults per campaign;

blue bars) and MeRLiN method (red bars) for all MiBench

benchmarks and all component configurations. We assume

that all injections run sequentially in the same machine.

40.68

77.07 82.09

199.84

0.65 0.49 1.28 2.42
0

50

100

150

200

Register File Store Queue L1 data cache Final Estimation
Time

M
o

n
th

s

Comprehensive fault injection (60,000 faults) MeRLiN

Figure 11: Actual reliability estimation times of the compre-

hensive baseline injection vs. MeRLiN for all structures con-

figurations of this study running 10 MiBench benchmarks.

4.4.2.3 SPEC CPU2006 benchmarks

To evaluate the efficiency of MeRLiN in terms of speedup

in larger benchmarks, we ran Simpoint samples of 100M

committed instructions with the highest weight from 10

selected integer benchmarks of the SPEC CPU2006 suite

assuming an initial fault list of 60,000 faults. We used the

configuration of Table 1, with 128 physical integer regis-

ters, 16 store and 16 load queue entries and a 32KB L1 data

cache. The results of the speedup that MeRLiN delivers are

reported in Figure 12. MeRLiN leads to very high final

speedups of 1644X, 2018X and 171X on average for the

RF, the SQ and the L1D cache, respectively, which are

higher than the speedups obtained for MiBench programs

since the Simpoint samples we used for SPECs correspond

to the most representative part of their execution.

Figure 6: Fine-grained homogeneity of fault effects in the RF, SQ and L1D for 10 MiBench benchmarks; using 6 classes of Table 2.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Kaliorakis et al.

Figure 8: MeRLiN speedup for the three sizes of the Physical Integer Register File running 10 MiBench benchmarks.

Figure 12: MeRLiN speedup for the Register File (RF), Store Queue (SQ), and L1 data cache (L1D) running 10 SPEC CPU2006.

Figure 10: MeRLiN speedup for the three sizes of the L1 data cache running 10 MiBench benchmarks.

Figure 9: MeRLiN speedup for the three sizes of the Store Queue running 10 MiBench benchmarks.

16.7 16.2 13.7 14.7 14.9 14.4 16.7 16.1 14.1 16.9 15.4 8.4 8.0 7.1 7.6 7.3 7.3 8.1 8.1 7.1
16.9

8.6 4.1 4.2 3.6 3.9 3.3 3.9 4.1 4.1 3.7 4.1 3.9

52.0

275.2

54.6
35.8

62.9

107.7

74.9

111.5

89.8

66.6

93.1

32.3

155.8

35.3
23.5

43.7

71.2
54.5

74.6
59.8

70.1
62.1

21.0

115.8

24.5 15.7

41.0 43.9 42.8
53.3

41.8 37.2 43.7

0

50

100

150

200

250

300

s
u

s
a

n
_

c

s
u

s
a

n
_

s

s
u

s
a

n
_

e

s
tr

in
g

s
e

a
rc

h

d
jp

e
g

s
h

a ff
t

q
s
o

rt

c
jp

e
g

c
a

e
s

a
v
e

ra
g

e

s
u

s
a

n
_

c

s
u

s
a

n
_

s

s
u

s
a

n
_

e

s
tr

in
g

s
e

a
rc

h

d
jp

e
g

s
h

a ff
t

q
s
o

rt

c
jp

e
g

c
a

e
s

a
v
e

ra
g

e

s
u

s
a

n
_

c

s
u

s
a

n
_

s

s
u

s
a

n
_

e

s
tr

in
g

s
e

a
rc

h

d
jp

e
g

s
h

a ff
t

q
s
o

rt

c
jp

e
g

c
a

e
s

a
v
e

ra
g

e

256regs 128regs 64regs

S
p

e
e

d
u

p

Speedup from ACE-like Speedup from Grouping

6.3

121.7

10.1 8.7 8.5
37.2 17.8 2.7 24.0 24.6 26.2 5.9

105.3

9.8 7.9 7.9 26.9 10.7 2.4 19.4 20.3 21.6 5.5

86.7

10.0 7.1
25.8 18.8 8.0 2.4 14.4 13.1 19.2

147.1

705.9

170.9
126.1115.8

219.8

150.4153.1
192.3

267.9
224.9

105.3

560.7

148.1

88.5 99.0

209.8

141.8138.2151.5

223.9
186.7

84.6

387.1

110.1
66.2

148.1
127.9

138.9
122.7

121.7 161.7146.9

0

100

200

300

400

500

600

700

800

s
u

s
a

n
_

c

s
u

s
a

n
_

s

s
u

s
a

n
_

e

s
tr

in
g

s
e

a
rc

h

d
jp

e
g

s
h

a ff
t

q
s
o

rt

c
jp

e
g

c
a

e
s

a
v
e

ra
g

e

s
u

s
a

n
_

c

s
u

s
a

n
_

s

s
u

s
a

n
_

e

s
tr

in
g

s
e

a
rc

h

d
jp

e
g

s
h

a ff
t

q
s
o

rt

c
jp

e
g

c
a

e
s

a
v
e

ra
g

e

s
u

s
a

n
_

c

s
u

s
a

n
_

s

s
u

s
a

n
_

e

s
tr

in
g

s
e

a
rc

h

d
jp

e
g

s
h

a ff
t

q
s
o

rt

c
jp

e
g

c
a

e
s

a
v
e

ra
g

e

64entries 32entries 16entries

S
p

e
e
d

u
p

Speedup from ACE-like Speedup from Grouping

4.4 5.1 2.7
8.6 5.6 9.2 2.2 1.8 1.4 2.1 4.3 4.2 3.3 1.9 7.6

2.1
5.9

2.0 1.8 1.5 1.7 3.2 4.6 2.4 1.9 6.0 2.7 4.5 2.2 1.9 1.9 1.5 3.0

54.9

95.2

61.8

43.1 44.4

72.5
71.5

117.2

67.2

51.5

67.9

42.6

100.0

49.5
36.4

47.4

69.4
68.2

90.5

61.5

50.3

61.6

35.5

96.8

41.3 34.8

48.0

69.0 68.3

87.3

46.7

61.9 59.0

0

20

40

60

80

100

120

140

s
u

s
a

n
_

c

s
u

s
a

n
_

s

s
u

s
a

n
_

e

s
tr

in
g

s
e

a
rc

h

d
jp

e
g

s
h

a ff
t

q
s
o

rt

c
jp

e
g

c
a

e
s

a
v
e

ra
g

e

s
u

s
a

n
_

c

s
u

s
a

n
_

s

s
u

s
a

n
_

e

s
tr

in
g

s
e

a
rc

h

d
jp

e
g

s
h

a ff
t

q
s
o

rt

c
jp

e
g

c
a

e
s

a
v
e

ra
g

e

s
u

s
a

n
_

c

s
u

s
a

n
_

s

s
u

s
a

n
_

e

s
tr

in
g

s
e

a
rc

h

d
jp

e
g

s
h

a ff
t

q
s
o

rt

c
jp

e
g

c
a

e
s

a
v
e

ra
g

e

64KB 32KB 16KB

S
p

e
e

d
u

p

Speedup from ACE-like Speedup from Grouping

7

517

6 7

294

6 7

264

5 7

268

6 7

253

5 7

297

5 7

260

5 7

255

6 7

237

6 7

244

5 7

289

6

1,875

2,308

175

1,935

2,500

168

1,935

2,222

178

405

1,538

188

1,818

2,222

168

2,000
2,143

172

1,071

1,622

150

1,818
1,935

175

1,765 1,818

169

1,818
1,875

172

1,644

2,018

171

0

500

1000

1500

2000

2500

RF SQ L1D RF SQ L1D RF SQ L1D RF SQ L1D RF SQ L1D RF SQ L1D RF SQ L1D RF SQ L1D RF SQ L1D RF SQ L1D RF SQ L1D

bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref omnetpp astar average

S
p

e
e

d
u

p

Speedup from ACE-like Speedup from Grouping

MeRLiN ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

4.4.2.4 Scaling of the MeRLiN method

The higher the statistical significance of the initial fault list

the larger the speedup that MeRLiN offers. In our initial set

of campaigns, we ran all MiBench benchmarks using

60,000 faults per campaign (99.8% confidence level and

0.63% error margin). To stress MeRLiN even further, we

repeated all these campaigns using a huge 10 times larger

initial list of 600,000 faults (99.8% confidence level and

0.19% error margin)5. Figure 13 presents the average

speedup achieved for these two sets of campaigns by the

ACE-like (lower purple segment of each bar) and the

grouping step (upper white segment) of MeRLiN, as well as

the final speedup achieved (value on top of each bar) for

each configuration. The final speedup was scaled up 3.46

times on average; practically meaning that for a 10 times

increase of the initial fault list, MeRLiN finally applies only

2.89 times more faults.

69.2 70.1 69.5

298.0
252.8

200.5
130.2

81.3 60.9

348.5 303.8
292.6

929.5

686.5

547.3

367.1

259.6
183.7

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

6
4
K

B

3
2
K

B

1
6
K

B

6
4
e

n
tr

ie
s

3
2
e

n
tr

ie
s

1
6
e

n
tr

ie
s

2
5
6

re
g
s

1
2
8

re
g
s

6
4
re

g
s

6
4
K

B

3
2
K

B

1
6
K

B

6
4
e

n
tr

ie
s

3
2
e

n
tr

ie
s

1
6
e

n
tr

ie
s

2
5
6

re
g
s

1
2
8

re
g
s

6
4
re

g
s

L1D SQ RF L1D SQ RF

Error margin 0.63% Error margin 0.19%

S
p

e
e

d
u

p

Speedup from ACE-like Speedup from Grouping

Figure 13: MeRLiN speedup scaling for 0.63% (60K faults)

and 0.19% error margin (600K faults); 10 MiBench average.

4.4.3 Reliability Estimation Accuracy

We measure the accuracy of the reliability estimations of

MeRLiN for the three components running 10 MiBench

benchmarks till the end. We compare MeRLiN's accuracy

against the injection in: (i) the remaining fault list after the

exclusion of the faults that target non-vulnerable intervals

(identified by the ACE-like step of the method), (ii) the

comprehensive baseline fault list (60,000 faults). Finally,

we evaluate MeRLiN’s accuracy for the RF with 60K faults

using Simpoints from the bzip2 and the gcc.

4.4.3.1 Accuracy in the remaining fault list after ACE-like

The estimation accuracy of MeRLiN for the three structures

of this study against the injection using the remaining fault

list after the ACE-like step is shown in Figure 14. Each

graph shows the average fault effect classification across

the 10 MiBench benchmarks used in our study for the three

configurations of each structure. The first bar (blue) in each

class corresponds to the results of the fault injection in the

remaining fault list after the ACE-like analysis, while the

5 In all our experiments we round up the number of injections (60,000 and

600,000) instead of rounding the error margins.

second bar (red) illustrates the results on the same fault list

after applying MeRLiN’s grouping algorithm and injecting

only the selected faults. The values on top of each bar rep-

resent the measurement per fault effect category. Similar

behavior is observed across all benchmarks. For all compo-

nent configurations, MeRLiN reports negligible differences

compared to the injection using all the faults that hit only

vulnerable intervals.

6
0
.6

1
%

8
.0

1
%

0
.1

0
%

2
.2

0
%

2
8
.9

8
%

0
.1

0
%

6
1
.0

2
%

7
.6

7
%

0
.1

2
%

2
.1

6
%

2
8
.9

7
%

0
.0

6
%

6
3
.1

5
%

6
.2

3
%

0
.1

6
%

3
.1

3
%

2
7
.2

9
%

0
.0

4
%

6
1
.3

4
%

8
.4

7
%

0
.1

1
%

1
.8

0
%

2
8
.2

2
%

0
.0

6
%

6
1

.0
8

%

7
.5

7
%

0
.1

1
%

1
.9

9
%

2
9
.2

1
%

0
.0

4
%

6
5
.2

6
%

5
.0

6
%

0
.1

5
%

3
.3

7
%

2
6
.1

0
%

0
.0

6
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

256regs 128regs 64regs

Fault Effect Classification after ACE-like of Register File
(average for 10 MiBench benchamarks)

Fault Injection in complete fault list remaining after ACE-like MeRLiN

6
9

.0
5

%

2
4

.4
4

%

0
.3

1
%

0
.3

5
%

5
.8

1
%

0
.0

4
%

6
7

.1
5

%

2
4

.1
1

%

0
.4

1
%

0
.3

4
%

7
.9

3
%

0
.0

6
%

6
8

.7
2

%

1
8

.9
1

%

0
.4

6
%

0
.5

0
%

1
1

.3
3

%

0
.0

8
%

6
9

.4
0

%

2
4

.3
8

%

0
.3

1
%

0
.3

8
%

5
.4

9
%

0
.0

4
%

6
7

.4
7

%

2
3

.7
9

%

0
.3

0
%

0
.3

8
%

8
.0

0
%

0
.0

6
%

6
9

.6
4

%

1
7

.8
3

%

0
.4

7
%

0
.4

8
%

1
1

.5
0

%

0
.0

8
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
a
s
k
e
d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e
rt

M
a
s
k
e
d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e
rt

M
a
s
k
e
d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e
rt

64 entries 32 entries 16 entries

Fault Effect Classification after ACE-like of Store Queue
(average for 10 MiBench benchamarks)

Fault Injection in complete fault list remaining after ACE-like MeRLiN

4
3

.4
1

%

4
3

.5
2

%

2
.1

6
%

1
.5

2
%

9
.1

7
%

0
.2

2
%

4
0

.8
5

%

4
8

.4
8

%

1
.4

6
%

1
.6

7
%

7
.4

1
%

0
.1

3
%

4
4

.2
3

%

4
6
.6

8
%

0
.7

6
%

1
.6

2
%

6
.6

3
%

0
.0

8
%

4
5
.2

2
%

4
0

.8
0

%

2
.6

7
%

1
.9

9
%

9
.0

9
%

0
.2

3
%

4
0

.0
0

%

4
9

.5
3

%

1
.4

0
%

1
.6

0
%

7
.3

3
%

0
.1

4
%

4
2

.0
9

%

4
9

.8
4

%

0
.2

7
%

1
.4

2
%

6
.3

1
%

0
.0

7
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

64 KB 32 KB 16 KB

Fault Effect Classification after ACE-like of L1 data cache
(average for 10 MiBench benchamarks)

Fault Injection in complete fault list remaining after ACE-like MeRLiN
Figure 14: Classification of MeRLiN against injection with

the remaining faults after ACE-like step for the RF, SQ, L1D.

4.4.3.2 Accuracy in the comprehensive list of 60K faults

Figure 15 shows the bigger picture for MeRLiN’s accuracy,

in which the final fault effect classification of the compre-

hensive baseline fault injection of 60,000 faults (blue bar) is

compared to the final classification of MeRLiN (red bar).

Each bar represents the average values across the 10

MiBench benchmarks. Similar behavior is observed across

all benchmarks. MeRLiN for all cases is extremely accurate

and delivers virtually the same reports with the comprehen-

sive injection, but orders of magnitude faster.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Kaliorakis et al.

9
7
.4

4
%

0
.5

2
%

0
.0

3
%

0
.1

4
%

1
.8

6
%

0
.0

1
%

9
5
.1

9
%

0
.9

6
%

0
.0

4
%

0
.2

8
%

3
.5

2
%

0
.0

1
%

9
1
.0

8
%

1
.5

3
%

0
.0

5
%

0
.8

4
%

6
.4

8
%

0
.0

2
%

9
7
.4

8
%

0
.5

4
%

0
.0

2
%

0
.1

2
%

1
.8

3
%

0
.0

1
%

9
5
.1

8
%

0
.9

0
%

0
.0

3
%

0
.2

6
%

3
.6

3
%

0
.0

0
%

9
1
.5

6
%

1
.2

6
%

0
.0

5
%

1
.0

1
%

6
.1

0
%

0
.0

2
%

0%

20%

40%

60%

80%

100%

120%
M

a
s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

256regs 128regs 64regs

Final Fault Effect Classification of Register File
(average for 10 MiBench benchmarks)

Comprehensive Baseline Fault Injection (60,000 faults) MeRLiN

9
7

.8
2

%

1
.6

9
%

0
.0

4
%

0
.0

2
%

0
.4

3
%

0
.0

0
%

9
7

.3
3

%

1
.8

7
%

0
.0

5
%

0
.0

3
%

0
.7

2
%

0
.0

0
%

9
7

.3
4

%

1
.3

9
%

0
.0

6
%

0
.0

6
%

1
.1

4
%

0
.0

1
%

9
7

.8
8

%

1
.6

4
%

0
.0

4
%

0
.0

3
%

0
.4

1
%

0
.0

0
%

9
7

.3
7

%

1
.8

2
%

0
.0

4
%

0
.0

4
%

0
.7

3
%

0
.0

0
%

9
7

.4
4

%

1
.3

1
%

0
.0

6
%

0
.0

6
%

1
.1

2
%

0
.0

1
%

0%

20%

40%

60%

80%

100%

120%

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e
rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

64 entries 32 entries 16 entries

Final Fault Effect Classification of Store Queue
(average for 10 MiBench benchmarks)

Comprehensive Baseline Fault Injection (60,000 faults) MeRLiN

8
0
.9

8
%

1
5

.8
9

%

0
.4

9
%

0
.3

3
%

2
.2

7
%

0
.0

4
%

7
6
.5

8
%

1
9

.8
8

%

0
.4

4
%

0
.5

4
%

2
.5

3
%

0
.0

3
%

7
7

.8
5

%

1
8

.3
8

%

0
.2

3
%

0
.6

0
%

2
.9

1
%

0
.0

3
%

8
2

.1
4

%

1
4

.5
1

%

0
.6

1
%

0
.5

1
%

2
.1

9
%

0
.0

4
%

7
6

.2
9

%

2
0

.2
4

%

0
.3

2
%

0
.5

3
%

2
.5

9
%

0
.0

3
%

7
6

.9
0

%

1
9

.7
6

%

0
.0

9
%

0
.5

2
%

2
.7

0
%

0
.0

3
%

0%

20%

40%

60%

80%

100%

120%

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a
s
k
e
d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e
rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

64 KB 32 KB 16 KB

Final Fault Effect Classification of L1 data cache
(average for 10 MiBench benchmarks)

Comprehensive Baseline Fault Injection (60,000 faults) MeRLiN
Figure 15: Final classification of MeRLiN against comprehen-

sive baseline injection (60,000 faults) for the RF, SQ, L1D.

4
.1

9
6

4
.1

2
5

1
2
.2

6
2

3
.9

4
1

3
.9

4
7

1
2
.3

1
3

3
.6

5
3

3
.4

5
9

1
2
.0

5
8

0
.8

9
2

0
.8

6
7

4
.4

0
7

0
.5

4
9

0
.5

3
9 2

.5
6
6

0
.2

7
2

0
.2

6
2

1
.4

5
6

9
9
7

9
3
7

2
4
5
9

6
1
4

6
2
2

1
1
2
0

2
9
0

3
0
3

6
3
6

0

400

800

1200

1600

2000

2400

0

2

4

6

8

10

12

14

16

18

20

B
a
s
e

lin
e

M
e

R
L
iN

A
C

E
-l
ik

e

B
a
s
e

lin
e

M
e

R
L
iN

A
C

E
-l
ik

e

B
a
s
e

lin
e

M
e

R
L
iN

A
C

E
-l
ik

e

B
a
s
e

lin
e

M
e

R
L
iN

A
C

E
-l
ik

e

B
a
s
e

lin
e

M
e

R
L
iN

A
C

E
-l
ik

e

B
a
s
e

lin
e

M
e

R
L
iN

A
C

E
-l
ik

e

B
a
s
e
lin

e

M
e

R
L
iN

A
C

E
-l
ik

e

B
a
s
e

lin
e

M
e

R
L
iN

A
C

E
-l
ik

e

B
a
s
e

lin
e

M
e

R
L
iN

A
C

E
-l
ik

e

256 regs 128 regs 64 regs 64 entries 32 entries 16 entries 64KB 32KB 16KB

Register File Store Queue L1 data cache

F
IT

F
IT

Figure 16: Final reliability assessment (FIT) for RF, SQ, and

L1D (average for 10 MiBench benchmarks).

4.4.3.3 Final Reliability Assessment (FIT)

Figure 16 demonstrates the final reliability estimation in

Failures-in-Time (FIT) rates for the comprehensive base-

line campaign (60,000 faults), the MeRLiN method and the

ACE-like method running the 10 MiBench benchmarks to

the end. The reported FIT rates are the products of AVF,

raw FIT rate and number of structure's bits. The AVF of the

injection-based methods is the ratio of the non-masked in-

jections over the total injections, while the AVF of the

ACE-like is measured as in [15]. Any raw FIT rate can be

used; we use 0.01 FIT per bit.

MeRLiN reports negligible differences compared to the

comprehensive baseline injection, while the ACE-like de-

livers a pessimistic lower bound of structures' reliability.

4.4.3.4 Accuracy using SPEC CPU2006 benchmarks

The evaluation of MeRLiN’s accuracy for SPEC CPU2006

benchmarks executed until the end in detailed microarchi-

tectural simulation mode is infeasible as was discussed in

Section 4.3. To overcome this difficulty and in order to

evaluate the accuracy that MeRLiN provides for SPEC

CPU2006 benchmarks, we applied MeRLiN injecting faults

in the physical register file for the gcc and bzip2 bench-

marks and terminating the fault injection runs at the end of

the Simpoint interval. The configuration for these experi-

ments is the one of Table 1, with 128 physical registers, 16

store and 16 load queue entries and a 32KB L1 data cache.

As we do not execute the fault injection runs to the end,

we are not able to identify SDCs, timeouts or any other ab-

normal behavior after the end of the Simpoint interval.

Thus, only for these experiments we used a different fault

effect classification than the classification presented in Ta-

ble 2. The classification consists of the following catego-

ries: (i) Masked; indicates a fault that was not over-written

or hit a non-vulnerable interval without affecting program

execution, (ii) DUE (as in Table 2), (iii) Crash (as in Table

2), (iv) Assert (as in Table 2), and (v) Unknown; indicates

a fault that still exists but at the end of the Simpoint inter-

val it is not known if it will eventually be classified in one

of the previous classes or if it will lead to an abnormal be-

havior.

Table 4 summarizes our measurements per fault effect

category using MeRLiN and the comprehensive baseline

fault list of 60K faults for the two benchmarks. In both cas-

es, MeRLiN delivers very accurate results per fault effect

category compared to the comprehensive baseline method,

while the maximum inaccuracy that was observed is only

1.11 percentile points for the Unknown category of the

bzip2 benchmark.

Table 4: MeRLiN’s accuracy for gcc and bzip2 benchmarks.

Category
gcc

(MeRLiN)

gcc

(baseline

60K faults)

bzip2

(MeRLiN)

bzip2

(baseline

60K faults)

Masked 85.08% 85.08% 84.98% 84.98%

DUE 0.06% 0.07% 0.29% 0.81%

Crash 3.67% 3.13% 3.50% 4.10%

Assert 0.01% 0.01% 0.03% 0.02%

Unknown 11.18% 11.71% 11.20% 10.09%

MeRLiN ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

4.4.4 Analysis of Relyzer’s heuristics

Both MeRLiN and Relyzer prune faults of the initial fault

list being injected at different levels of the system stack.

Thus, in this section we analyze the applicability of Relyzer

heuristics at the microarchitecture level injection.

Bounding addresses: It prunes faults in the address

field of store and load instructions if the valid address space

is violated. This heuristic requires an unaffordable amount

of memory to track the addresses in data related structures

(e.g. caches). Also, MeRLiN provides finer grained effect

classification for non-masking categories (Table 2) and is

not limited to symptom-based techniques.

Def-use: It prunes faults in the destination architectural

register of an instruction followed by another instruction

that consumes this value, as these faults will have the same

effect. Store-equivalence is similar to the def-use for store

and load instructions. These two heuristics cannot be ap-

plied at the microarchitecture level of our work. The desti-

nation register of an instruction and the source register of a

subsequent correspond to the same physical entity [47].

Control-equivalence: Software analysis using basic

blocks tracks the control flow paths of all the dynamic in-

stances of all the static instructions to separate Masked

from SDC faults [46]. For each path Relyzer randomly

chooses only one pilot. To evaluate this heuristic, we ran

the 10 MiBench to the end with 128 registers, 16 SQ en-

tries and 32KB L1D. Exhaustive fault injection is infeasi-

ble; thus, we used the remaining faults (from 60,000 initial

faults) after the pruning by our ACE-like step. We used a

control flow path depth of 5, exactly as Relyzer does [45].

In terms of speedup, MeRLiN slightly prevails on aver-

age in the RF (62.1X compared to 60.5X) and the L1D

(60.1X compared to 59.1X), while for the SQ, MeRLiN

provides 146.9X speedup compared to 150.6X of Relyzer's

heuristic. Figure 17, illustrates the results of the compari-

son in terms of inaccuracy in percentile units compared to

the injection using the same fault list.

A source of Relyzer’s inaccuracy is the static instruc-

tions with large population of faults that are represented by

only one randomly selected pilot. In [45], 52% on average

of all static instructions have only 1 pilot. We measured

that Relyzer leaves 9% of the groups correlated to a static

instruction with large population of faults (more than 100

faults) with only 1 pilot, while MeRLiN leaves less than

2%. The heuristic of Relyzer if applied to our statistical

concept selects only one pilot for code loops with large

number of iterations. Assume a for-loop with 1000 itera-

tions that consists of only one static instruction with only

two control flow paths with 995 and 5 instances, respective-

ly. Due to statistical sampling all faults may come only

from the first path. In this case, Relyzer chooses only one

pilot for this loop. On the contrary, MeRLiN, due to the

homogenous distribution of faults, chooses more than one

from different bytes and dynamic instances. These large

loops exist in most program execution phases, including

initialization and output phase that are not examined by

[45]. Despite of Relyzer’s indisputable merit in software

resilience, this heuristic of Relyzer is not so efficient to be

employed in our concept.

1
.5

3

1
.7

5

0
.0

7 0
.3

8

4
.0

1

0
.2

8

3
.2

3

1
.7

6

3
.3

5

1
.6

5

2
.4

2

2
.4

1

2
.9

3

4
.1

2

0
.4

4

0
.1

6

0
.2

6 0
.6

5

0
.0

7

0
.6

9

0
.1

2

0
.1

5

0
.9

2

0
.0

2

0
.8

3 1
.1

0

0
.0

2

0
.0

1 0
.2

8

0
.0

1

0
.8

6

1
.0

6

0
.0

6

0
.0

8

0
.0

8

0
.0

1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

RF SQ L1D

In
a

c
c
u

ra
c
y
 i
n

 p
e

rc
e

n
ti
le

 u
n

it
s

Relyzer MeRLiN
Figure 17: Inaccuracy of MeRLiN and Relyzer vs. injection

with the remaining faults after ACE-like;avg. for 10 MiBench.

4.4.5 Theoretical analysis of MeRLiN

In this section we analyze the statistical behavior of MeR-

LiN comparing the mean and the variance of the AVF

measurements it reports to the corresponding mean and

variance of the comprehensive fault injection campaign.

We assume that soft errors affecting the microprocessor bits

follow a normal distribution [26]. A fault injection cam-

paign can be described as a binomial experiment of F indi-

vidual injections, each of which has a probability of success

(program is affected) or failure (program is not affected;

fault is masked). Thus, the AVF measurement k (0 ≤ k ≤ 1)

in our case means that k·F faults are Not-Masked.

MeRLiN’s first phase prunes a fraction m (0 ≤ m ≤ 1) of

the F faults that are guaranteed masked: m·F. The remain-

ing (1–m)·F faults (which now contain all k·F Not-Masked

faults of the initial list of F faults) are forwarded to the sec-

ond phase of MeRLiN (grouping). This second phase pro-

duces n groups of faults with sizes si (i=1, 2, … , n). The

sum of the group sizes is equal to the number of faults

passed to the second phase: s1 + s2 + … + sn = (1–m)·F.

When the comprehensive injection campaign (without

MeRLiN) is applied, all F faults are injected and the out-

come r of each run is observed (Not-Masked=1 or

Masked=0). In this case, the AVF (k) is6:

1 1

isn
j

i

i j

r

k
F

We assume that the probability of Non-Masking within

a group i is pi. Within a group i, all faults have the same

6
 We could consider as group 0 with size s0= m·F the group of faults from

MeRLiN’s pre-processing step but since all faults of this group are masked,

i.e. r=0, this group is not needed in the calculations.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Kaliorakis et al.

probability pi because of MeRLiN’s grouping criterion:

faults in a group hit the same byte of the entries during a

vulnerable interval that ends with the same instruction that

reads the entry. The results of Figure 7 show the validity of

this assumption; they indicate that the vast majority of

groups have homogeneity close to 1.0 (considering only the

masked and non-masked categories) and that the percent-

age of groups with perfect homogeneity is very large in all

cases. Across groups, probabilities pi are different since the

groups correspond to faults eventually read by different

instructions. The mean (expected value; E) of the AVF

measurement k in the comprehensive campaign is7:

1 1 1 1 1 1 1

()

()

i i is s sn n n n
j j

i i i i i
i j i j i j i

r E r p s p

E k E
F F F F

When MeRLiN is employed it delivers a new AVF

measurement kMeRLiN. For each run r of the selected fault

from a group i all faults are assumed to have the same re-

sult (1=Not-Masked, 0=Masked). So, the true measurement

in this case is si ri for each group i and the new AVF kMeRLiN

is:

1

n

i i

i
MeRLiN

s r

k
F

, which has a mean

1 1 1 1

() ()

() ()

n n n n

i i i i i i i i

i i i i
MeRLiN

s r E s r s E r s p

E k E E k
F F F F

therefore, MeRLiN reports AVF with the same mean value

as the original comprehensive set of F fault injections. Τhe

variance of the AVF measurements k and kMeRLiN is shown

in the following equations8:

2

1 1 1 1 1 12 2

2 2

2 1

2

() (1)

()

(1)

 ()

i i is s sn n n
j j

i i i i

i j i j i j

n

i i i

i

r r p p

k
F F F

s p p

k
F

2 2 2

2 2 1 1 1

2 2

() (1)

()

n n n
j

i i i i i i i

i i i
MeRLiN

s r s r s p p

k
F F F

The values of both 2()k and 2()MeRLiNk are very small

(several orders of magnitude smaller than the means of k

7
 We use the linearity property of the means of independent variables which

holds for binomial distribution. The mean of a binomially distributed varia-

ble is E(X) = n p with n experiments and p success probability.
8
 We use the relation 2 2 2 2 2() () ()a X b Y a X b Y for the vari-

ances of independent variables. Group 0 has zero variance.

and kMeRLiN, respectively) for two reasons: (a) the groups

generated by MeRLiN are very homogeneous (thus either pi

or (1–pi) is zero or is very small) as shown in Section 4.4.1

and (b) the sizes of the groups (si values) are very small

compared to F. In our experiments, the average size of a

MeRLiN group is always less than100 and typically ranges

between 5 and 40. Thus, with simple calculations on the

above equations the variance of the initial AVF value when

F consists of 60K faults is about 8 to 10 orders of magni-

tude smaller than the mean. Therefore, the multiplication

with the si values in the variance of MeRLiN’s AVF meas-

urements 2()MeRLiNk keeps this variance from 6 to 8 orders

of magnitude smaller than the mean (assuming si values up

to 100): still a very small variance, only slightly increased

compared to the initial one.

Overall our analysis shows that the AVF measurement

of MeRLiN has the same mean as the comprehensive ex-

periment of F injections, while both have a very small vari-

ance. These two statistical properties make them almost

statistically equivalent although MeRLiN reports AVF in 2

to 3 orders of magnitude shorter time.

5. CONCLUSIONS
We presented MeRLiN, a methodology to accelerate com-

prehensive, statistically significant microarchitecture level

fault injection campaigns on hardware structures modeled

in performance simulators. MeRLiN's effectiveness is based

on the combination of the principle of dynamic instruction

repetition and the identification of the non-vulnerable in-

tervals for the entries of the hardware structures. We

demonstrated its efficiency using microarchitecture level

fault injection on a Gem5 model of a contemporary micro-

processor. We reported results for the method's speedup,

accuracy, and scaling for different sizes of the physical reg-

ister file, store queue and first level data cache.

MeRLiN achieves several orders of magnitude speedup

(reduction of the number of injections) while it virtually

delivers the same reliability measurements compared to

exhaustive (but computationally infeasible) fault injection

campaigns. Our experimental results and theoretical analy-

sis validate MeRLiN’s accuracy.

ACKNOWLEDGMENT
This work has been funded by the European Union through

the CLERECO FP7 Project (Grant Agreement 611404) and

the UniServer H2020 Project (Grant Agreement 688540).

6. REFERENCES
[1] Robert Baumann. 2005. Soft errors in advanced computer systems. In

IEEE Design & Test of Computers, vol. 22, no. 3, pp. 258-266, May-

June. DOI:http://doi.org/10.1109/MDT.2005.69

[2] Zeshan Chishti, Alaa R.Alameldeen, Chris Wilkerson, Wei Wu, and

Shih-Lien Lu. 2009. Improving cache lifetime reliability

at ultra-low voltages. In Proceedings of the IEEE/ACM

MeRLiN ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

International Symposium on Microarchitecture (MICRO).

DOI:http://dx.doi.org/10.1145/1669112.1669126

[3] Cristian Constantinescu. 2003. Trends and challenges in VLSI circuit

reliability. In IEEE Micro, vol. 23, pp. 14-19, July.

DOI:http://dx.doi.org/10.1109/MM.2003.1225959

[4] Lin Huang, and Qiang Xu. 2010. AgeSim: A simulation framework for

evaluating the lifetime reliability of processor-based SoCs. In Proceed-

ings of Design, Automation and Test in Europe (DATE). ISBN:978-3-

9810801-6-2

[5] Sani R.Nassif, Nikil Mehta, and Yu Cao. 2010. A resilience roadmap.

In Proceedings of Design, Automation and Test in Europe (DATE).

ISBN:978-3-9810801-6-2

[6] Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin

Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and

Onur Mutlu. 2014. Characterizing application memory error vulnerabil-

ity to optimize datacenter cost via heterogeneous reliability

memory. In Proceedings of IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN).

DOI:http://dx.doi.org/10.1109/DSN.2014.50

[7] Hyungmin Cho, Shahrzad Mirkhani, Chen-Yong Cher, Jacob

A.Abraham, and Subbanish Mitra. 2013. Quantitative evaluation of soft

error injection techniques for robust system design. In Proceedings of

ACM/EDAC/IEEE Design and Automation Conference (DAC).

ISBN:978-1-4503-2071-9

[8] Michail Maniatakos, Naghmeh Karimi, Chandra Tirumurti, Abhijit Jas,

and Yiorgos Makris. 2011. Instruction- level impact analysis of low-

level faults in a modern microprocessor controller. In

IEEE Transactions on Computers, vol. 60, no. 9, pp.1260-1273.

DOI:http://dx.doi.org/ 10.1109/TC.2010.60

[9] Nicholas J.Wang, Aqeel Mahersi, and Sanjay J.Patel. 2007. Examining

ACE analysis reliability estimates using fault-injection. In Proceedings

of IEEE/ACM International Symposium on Computer Architecture

(ISCA). DOI:http://dx.doi.org/10.1145/1250662.1250719

[10] Gulay Yalcin, Osman S.Unsal, Adrian Cristal, and Mateo

Valero. 2011. FIMSIM: A fault injection infrastructure for

microarchitectural simulators. In Proceedings of IEEE

International Conference on Computer Design (ICCD).

DOI:http://dx.doi.org/10.1109/ICCD.2011.6081435

[11] Nikos Foutris, Dimitris Gizopoulos, John Kalamatianos, and Vilas

Sridharan. 2013. Assessing the impact of hard faults in performance

components of modern microprocessors. In Proceedings of IEEE

International Conference on Computer Design (ICCD).

DOI:http://dx.doi.org /10.1109/ICCD.2013.6657044

[12] Athanasios Chatzidimitriou, and Dimitris Gizopoulos. 2016. Anatomy

of microarchitecture-level reliability assessment: Throughput and accu-

racy. In Proceedings of IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS).

DOI:http://dx.doi.org/10.1109/ISPASS.2016.7482075

[13] Manolis Kaliorakis, Sotiris Tselonis, Athanasios Chatzidimitriou,

and Dimitris Gizopoulos. 2015. Differential fault injection

on microarchitectural simulators. In Proceedings of IEEE

International Symposium on Workload Characterization (IISWC).

DOI:http://dx.doi.org/10.1109/IISWC.2015.28

[14] Manolis Kaliorakis, Sotiris Tselonis, Athanasios Chatzidimitriou, and

Dimitris Gizopoulos. 2015. Accelerated microarchitectural

fault injection-based reliability assessment. In Proceedings of

IEEE International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems (DFTS).

DOI:http://dx.doi.org/10.1109/DFT.2015.7315134

[15] Shubhendu S.Mukherjee, Christopher Weaver, Joel Emer, Steven

K.Reinhardt, and Todd Austin. 2004. A systematic methodology to

compute the architectural vulnerability factors for a high-performance

microprocessors. In Proceedings of IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO). ISBN:0-7695-2043-X

[16] Arun Nair, Stijn Eyerman, Lieven Eeckhout, and Lizy K.John. 2012. A

first-order mechanistic model for architectural vulnerability factor. In

Proceedings of IEEE/ACM International Symposium on Computer

Architecture (ISCA). DOI:http://dx.doi.org/10.1145/2366231.2337191

[17] Arijit Biswas, Paul Racunas, Romulus Cheveresan, Joel Emer,

Shubhendu S.Mukherjee, and Ram Rangan. 2005. Computing

architectural vulnerability factors for address-based structures. In Pro-

ceedings of IEEE/ACM International Symposium on Computer Archi-

tecture (ISCA). DOI:http://dx.doi.org/10.1109/ISCA.2005.18

[18] Hossein Asadi, Vilas Sridharan, Mehdi Tahoori, and David Kaeli. 2005.

Balancing performance and reliability in the memory hierarchy. In Pro-

ceedings of IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). DOI:http://dx.doi.org/

10.1109/ISPASS.2005.1430581

[19] Xiaodong Li, Sarita V.Adve, Pradip Bose, and Jude A.Rivers. 2005.

SoftArch: An architecture-level tool for modeling and

analyzing soft errors. In Proceedings of IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN).

DOI:http://dx.doi.org/10.1109/DSN.2005.88

[20] Jinho Suh, Murali Annavaram, and Michel Dubois. 2012. MACAU: A

markov model for reliability evaluations of caches under single-bit

and multi-bit upsets. In Proceedings of IEEE International

Symposium on High Performance Computer Architecture (HPCA).

DOI:http://dx.doi.org/ 10.1109/HPCA.2012.6168940

[21] Jinho Suh, Mehrtash Manoochehri, Murali Annavaram, and

Michel Dubois. 2011. Soft error benchmarking of L2 caches

with PARMA. In Proceedings of ACM SIGMETRICS.

DOI:http://dx.doi.org/10.1145/2007116.2007127

[22] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.

2010. Shoestring: probabilistic soft error reliability on the cheap. In

Proceedings of IEEE/ACM International Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS). DOI:http://dx.doi.org/10.1145/1736020.1736063

[23] Nishant J.George, Carl R.Elks, Barry W.Johnson, and John Lach. 2010.

Transient fault models and AVF estimation revisited. In Proceedings of

IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). DOI:http://dx.doi.org/10.1109/DSN.2010.5544276

[24] Xiaodong Li, Sarita V.Adve, Pradip Bose, and Jude A.Rivers. 2007.

Architecture-level soft error analysis: Examining the limits of common

assumptions. In Proceedings of IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN). DOI: http://dx.doi.org/

10.1109/DSN.2007.15

[25] Arun A.Nair, Lizy K.John, and Lieven Eeckhout. 2010. AVF Stress-

mark: Towards an automated methodology for bounding the worst-case

vulnerability to soft errors. In Proceedings of IEEE/ACM International

Symposium on Microarchitecture (MICRO). DOI:http://dx.doi.org/

10.1109/MICRO.2010.34

[26] Regis Leveugle, A.Calvez, Paolo Maistri, and Pierre Vanhauwaert.

2009. Statistical fault injection: Quantified error and confidence. In

Proceedings of Design, Automation and Test in Europe (DATE).

DOI:http://dx.doi.org/ 10.1109/DATE.2009.5090716

[27] Arijit Biswas, Paul Racunas, Joel Emer, and Shubhendu S.Mukherjee.

2008. Computing accurate AVFs using ACE analysis on performance

models: a rebuttal. In IEEE Computer Architecture Letters, vol.7, no.

1, January-June. DOI:http://dx.doi.org/ 10.1109/L-CA.2007.19

[28] Aashish Phansalkar, Ajay Joshi, and Lizy K.John. 2007. Analysis of

redundancy and application balance in the SPEC CPU2006

benchmark suite. In Proceedings of IEEE/ACM International Sympo-

sium on Computer Architecture (ISCA). DOI:http://dx.doi.org/

10.1145/1273440.1250713

[29] Avinash Sodani, and Gurinhar S.Sohi. 1997. Dynamic instruction reuse.

In Proceedings of IEEE/ACM International Symposium on Computer

Architecture (ISCA). DOI:http://dx.doi.org/10.1145/384286.264200

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Kaliorakis et al.

[30] Avinash Sodani, and Gurinhar S.Sohi. 1998. An empirical

analysis of instruction repetition. In Proceedings of IEEE/ACM

International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS).

DOI:http://dx.doi.org/10.1145/384265.291016

[31] Saisanthosh Balakrishnan, and Gurinhar S.Sohi. 2003. Exploiting value

locality in physical register files. In Proceedings of IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO). ISBN:0-7695-

2043-X

[32] Xin Fu, Tao Li, and Jose Fortes. 2006. Sim-SODA: A unified frame-

work for architectural level software reliability analysis. In Workshop

on Modeling, Benchmarking and Simulation.

[33] Lide Duan, Bin Li, and Lu Peng. 2009. Versatile prediction and fast

estimation of architectural vulnerability factor from processor perfor-

mance metrics. In Proceedings of IEEE International Symposium

on High Performance Computer Architecture (HPCA).

DOI:http://dx.doi.org/ 10.1109/HPCA.2009.4798244

[34] Konstantinos Parasyris, Georgios Tziantzoulis, Christos D. Antonopou-

los, and Nikolaos Bellas. 2014. GemFI: A fault injection tool for study-

ing the behavior of applications on unreliable substrates. In Proceed-

ings of IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN). DOI:http://dx.doi.org/10.1109/DSN.2014.96

[35] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven

K.Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek

R.Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey

Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.Hill,

and David A.Wood. 2011. The Gem5 simulator. In ACM

SIGARCH Computer Architecture News, vol. 39, no. 2, May.

DOI:http://dx.doi.org/10.1145/2024716.2024718

[36] Man-Lap Li, Pradeep Ramachandran, Swarup K.Sahoo, Sarita V.Adve,

Vikram S.Adve, and Yuanyuan Zhou. 2008. Understanding the propa-

gation of hard errors to software and implications for resilient system

design. In Proceedings of IEEE/ACM International Conference on Ar-

chitectural Support for Programming Languages and Operating Sys-

tems (ASPLOS). DOI:http://dx.doi.org/ 10.1145/1353534.1346315

[37] Jinho Suh, Murali Annavaram, and Michel Dubois. 2013.

PHYS: Profiled-HYbrid Sampling for soft error reliability

benchmarking. In Proceedings of IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN).

DOI:http://dx.doi.org/10.1109/DSN.2013.6575352

[38] Vilas Sridharan, and David R.Kaeli. 2009. Eliminating

microarchitectural dependency from architectural vulnerability.

In Proceedings of IEEE International Symposium on

High Performance Computer Architecture (HPCA).

DOI:http://dx.doi.org/10.1109/HPCA.2009.4798243

[39] Vilas Sridharan, and David R.Kaeli. 2010. Using hardware vulnerabil-

ity factors to enhance AVF analysis. In Proceedings of IEEE/ACM In-

ternational Symposium on Computer Architecture (ISCA).

DOI:http://dx.doi.org/10.1145/1816038.1816023

[40] Arijit Biswas, Niranjan Soundararajan, Shubhendu S.Mukherjee,

Sudhanva Gurumurthi. 2009. Quantized AVF: a means of capturing

vulnerability variations over small windows of time. In International

Workshop on Silicon Errors in Logic-System Effects (SELSE).

[41] Pablo Montesinos, Wei Liu, and Josep Torrellas. 2007. Using

register lifetime predictions to protect register files

against soft errors. In Proceedings of IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN).

DOI:http://dx.doi.org/10.1109/DSN.2007.99

[42] Xin Xu, and Man-Lap Li. 2012. Understanding soft error propagation

using efficient vulnerability-driven fault injection. In Proceedings of

IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). ISBN: 978-1-4673-1624-8

[43] Vimal Reddy, and Eric Rotenberg. 2007. Inherent Time

Redundancy (ITR): Using program repetition for low-overhead

fault tolerance. In Proceedings of IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN).

DOI:http://dx.doi.org/10.1109/DSN.2007.59

[44] Mohamed A.Gomaa, and T.N.Vijaykumar. 2005. Opportunistic transi-

ent-fault detection. In Proceedings of IEEE/ACM International

Symposium on Computer Architecture (ISCA). DOI:http://dx.doi.org/

10.1109/ISCA.2005.38

[45] Siva K.S.Hari, Sarita V.Adve, Helia Naemi, and Pradeep Ramachan-

dran. 2012. Relyzer: Exploiting application-level fault equivalence to

analyze application resiliency to transient faults. In Proceedings of

IEEE/ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS).

DOI:http://dx.doi.org/ 10.1145/2150976.2150990

[46] Guanpeng Li, Qining Lu, and Karthik Pattabiraman. 2015.

Fine-grained characterization of faults causing long latency

crashes in programs. In Proceedings of IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN).

DOI:http://dx.doi.org/10.1109/DSN.2015.36

[47] Horst Schirmeier, Christoph Borchert, and Olaf Spinczyk. 2015. Avoid-

ing pitfalls in fault-injection based comparison of program susceptibility

to soft errors. In Proceedings of IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN). DOI:http://dx.doi.org/

10.1109/DSN.2015.44

[48] Siva K.S.Hari, Radha Venkatagiri, Sarita V.Adve, and Helia

Naemi. 2014. GangES: Gang error simulation for hardware

resilience evaluation. In Proceedings of IEEE/ACM

International Symposium on Computer Architecture (ISCA).

DOI:http://dx.doi.org/10.1145/2678373.2665685

[49] Matthew R.Guthaus, Jeff S.Ringenberg, Damien Ernst, Todd M.Austin,

Trevor Mudge, and Richard B.Brown. 2001. MiBench: A free, com-

mercially representative embedded benchmark suite. In Proceedings of

IEEE International Workshop on Workload Characterization (WWC).

DOI:http://dx.doi.org/ 10.1109/WWC.2001.990739

[50] Daya S.Khudia, and Scott Mahlke. 2014. Harnessing soft computations

for low budget fault tolerance. In Proceedings of IEEE/ACM

International Symposium on Microarchitecture (MICRO).

DOI:http://dx.doi.org/ 10.1109/MICRO.2014.33

[51] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.

2002. Automatically characterizing large scale program behavior. In

Proceedings of IEEE/ACM International Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS). DOI:http://dx.doi.org/10.1145/635506.605403

