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ABSTRACT@ 
Early reliability assessment of hardware structures using 

microarchitecture level simulators can effectively guide 

major error protection decisions in microprocessor design. 

Statistical fault injection on microarchitectural structures 

modeled in performance simulators is an accurate method 

to measure their Architectural Vulnerability Factor (AVF) 

but requires excessively long campaigns to obtain high sta-

tistical significance.  

We propose MeRLiN1, a methodology to boost microar-

chitecture level injection-based reliability assessment by 

several orders of magnitude and keep the accuracy of the 

assessment unaffected even for large injection campaigns 

with very high statistical significance. The core of MeRLiN 

is the grouping of faults of an initial list in equivalent clas-

ses. All faults in the same group target equivalent vulnera-

ble intervals of program execution ending up to the same 

static instruction that reads the faulty entries. Faults in the 

same group occur in different times and entries of a struc-

ture and it is extremely likely that they all have the same 

effect in program execution; thus, fault injection is per-

formed only on a few representatives from each group. 

We evaluate MeRLiN for different sizes of the physical 

register file, the store queue and the first level data cache of 

a contemporary microarchitecture running MiBench and 

SPEC CPU2006 benchmarks. For all our experiments, 

MeRLiN is from 2 to 3 orders of magnitude faster than an 

extremely high statistical significant injection campaign, 

reporting the same reliability measurements with negligible 

loss of accuracy. Finally, we theoretically analyze MeR-

LiN’s statistical behavior to further justify its accuracy. 

CCS CONCEPTS 
• Computer systems organization → Reliability 
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1. INTRODUCTION1 
Continuous miniaturization of transistors allows computer 

architects to build more complex and efficient circuits in 

terms of functionality and performance. However, these 

chips become more and more susceptible to transient, in-

termittent and permanent faults due to external factors 

(such as particle strikes), manufacturing defects or wear-out 

phenomena [1, 2, 3, 4, 5]. 

Unavoidably, designers devote significant resources (ef-

fort, budget, circuit area) to ensure sufficient reliability lev-

els of the computing system before it is released to market. 

Design decisions for detection, diagnosis, recovery and re-

pair of faults are always translated to performance, area and 

power overheads. If such design decisions are guided by 

inaccurate reliability assessments, they can lead to unneces-

sary and excessive costs for error protection [6]. Early but 

also accurate reliability assessment is vital for optimal se-

lection among the available protection mechanisms.  

The four more popular approaches to estimate the reli-

ability of hardware components are: RTL injection [7, 8, 9], 

microarchitecture level injection [10, 11, 12, 13, 14], ACE 

(Architecturally Correct Execution) analysis [15, 16, 17, 

18] and probabilistic models [19, 20, 21, 22]. 

RTL injection allows very accurate studies of the fault 

effects in all hardware structures but these studies are per-

formed too late in the design cycle to facilitate effective 

decision-making for error protection. Moreover, RTL injec-

tion requires excessively long simulation time which pre-

vents detailed reliability evaluation of components with 

                                                        
1
  MeRLiN = Microarchitectural evaluation of Reliability using statisticaL 

fault iNjection. 
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statistically significant number of injections and large 

workloads. Microarchitecture level injection, on the other 

hand, is less detailed than RTL injection and is used for 

accurate full-system studies of fault effects in early design 

stages; it is orders of magnitude faster than RTL injection.  

ACE analysis and probabilistic models are significant-

ly faster than the two injection methods because they re-

quire a single or few fault-free runs to report reliability es-

timations. They provide a very useful but conservative low-

er bound of the reliability (upper bound of the vulnerability) 

of hardware components [9, 23, 24]. In particular, [23] 

reports 7X and [9] reports 3X AVF over-estimation of ACE 

analysis compared to fault injection. For example, [25] re-

ports about 30% AVF for the physical integer register file 

of the out-of-order Alpha 21264 microprocessor with 80 
registers using ACE analysis2; however, our comprehensive 

injection campaign of 60,000 transient faults3 targeting the 

same structure for the same benchmarks on the out-of-order 

x86-64 microarchitecture in Gem5 measures only 2.56%, 

4.81%, and 8.92% AVF for 256, 128 and 64 registers re-

spectively.4 Moreover, ACE analysis is not suitable to eval-

uate fault tolerant mechanisms that are based on soft error 

symptoms, in contrast to microarchitecture level injection 

[9, 27]. Despite of its disadvantages, ACE analysis merit in 

early reliability assessments is indisputable because it gives 

the opportunity to estimate the upper bound of vulnerability 

for different design options (component sizes, policies, etc.) 

in very short time.  

Figure 1 reflects the motivation of our MeRLiN meth-

odology compared to the four aforementioned state-of-the-

art methods in terms of speed and measurement accuracy. 

An ideal method at the top-right corner of the figure would 

provide the highest speed (equal to that of the ACE analysis 

and probabilistic models) and the highest accuracy (equal 

to that of the injection methods with high statistical signifi-

cance). MeRLiN approaches the ideal method boosting mi-

croarchitecture level injection-based reliability assessment 

while keeping its measurement accuracy unaffected. The 

backbone of MeRLiN is built on two major observations:  

 A large number of faults in a statistical fault injection 

campaign are over-written before being read or are in-

jected in dead or invalid entries of the hardware struc-

ture [14]. These faults can be easily identified and 

pruned from the initial fault list in a single run. We call 

this first part of our method ACE-like. 

 The faults that are injected in the same or different en-

tries of a structure during the same or different vulnera-

                                                        
2  Our ACE-like analysis corroborates this and reports about 25% AVF for a 

register file of 80 registers for the same benchmarks. 
3  This population of faults corresponds to an extremely low error margin 

(0.63%) and an extremely high confidence level (99.8%); see [26]. 
4  For more details see Section 4. For 80 registers the injection-based AVF 

measurement is about 6%. 

ble intervals are very likely to have the same effect on 

program execution if these intervals end up to the same 

static instruction and the same micro-operation (uop) 

that reads the faulty entry. MeRLiN groups these faults 

together and performs fault injection on a small number 

of representatives. While it preserves the accuracy of the 

reliability measurements, this grouping drastically re-

duces the number of required injections because instruc-

tion repetition is an extensively inherent property of all 

programs [28, 29, 30, 31]. 
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Figure 1: Reliability estimation methods: speed and accuracy. 

Microarchitecture level, full-system simulators have 

been used for early assessment of the soft error vulnerability 

of hardware structures (register files, buffers, queues, cach-

es etc.) that occupy the majority of the chip's area [10, 13, 

32, 33, 34]. We implement and evaluate MeRLiN on a 

state-of-the-art microarchitecture level fault injector [12] 

[13] built on Gem5 [35]. MeRLiN's contributions are: 

 It accelerates statistical microarchitecture level fault 

injection from 2 to 3 orders of magnitude. Our experi-

ments with full runs of 10 MiBench benchmarks show 

93X, 225X and 68X speedup on average for different 

sizes of the register file, the store queue and the first 

level data cache, respectively. When applied to 10 

SPEC CPU2006 benchmarks, MeRLiN reveals larger 

average speedups of 1644X, 2018X and 171X for the 

register file, the store queue and the first level data 

cache, respectively. 

 It reports virtually the same reliability estimations as 

conventional microarchitectural fault injection with ex-

tremely high statistical significance. 

 It delivers fine-grained insights of the fault effects (Si-

lent Data Corruptions-SDC, Detected Unrecoverable 

Errors-DUE, crashes, locks) unlike ACE analysis which 

only reports a gross AVF estimate. This can be used to 

evaluate different protection schemes or to identify 

benchmarks more prone to SDCs [27, 36]. 

2. RELATED WORK 
Lifetime analysis has been previously used in several relia-

bility-related studies. The method of [37] uses execution 

intervals sampling for reliability evaluation of caches. In 
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[38, 39], the authors separate the Hardware Vulnerability 

Factor (HVF) from the Program Vulnerability Factor 

(PVF), while [40] focuses on on-line vulnerability estima-

tion and [25] aims to develop stressmarks to measure the 

maximum vulnerability of hardware structures to soft er-

rors. The methods in [41, 42, 43, 44] use lifetime analysis 

to support decision-making for error protection. 

Relyzer [45] aims to evaluate the effectiveness of soft-

ware symptom-based error detection techniques and to 

identify all the SDCs [46, 47]. Relyzer injects faults only at 

the software level (architectural registers and output of 

load/store address generation units), without considering 

microarchitecture level masking and its features (flushes, 

store forwarding, dead instructions, cache write backs etc.) 

which our method fully supports. Relyzer comprehensively 

measures the application resiliency or, equivalently, reports 

the PVF portion [38] of the AVF. On the other hand, MeR-

LiN considers both the microarchitecture and the software 

masking and injects faults in the actual bits of any hard-

ware structure at any cycle of the program execution; thus 

it reports the complete AVF including both the HVF and 

the PVF dimensions. Unlike Relyzer, MeRLiN: 

 Reports the vulnerability of all microarchitectural struc-

tures modeled in performance simulators (physical reg-

ister file, ROB, LSQ, predictors, caches, TLBs, etc.) and 

the vulnerability of the entire CPU. Relyzer focuses only 

on software resilience to faults. 

 Reports the vulnerability of instruction related struc-

tures (L1 Instruction cache, fetch queue, trace cache, 

etc.). Relyzer only studies faults that reach data fields of 

the software. 

 Can be used in early design stages to guide reliability 

design decisions concerning several microarchitectural 

features (components sizes, policies, etc.) or the use of 

several hardware and software protection mechanisms; 

Relyzer is limited to software symptom-based detectors. 

GangES [48] is a follow-up study of [45] that acceler-

ates injections at the software layer monitoring the inter-

mediate execution state of each run. Finally, [12] is orthog-

onal to MeRLiN and can be combined with it, as it acceler-

ates the individual microarchitectural injection runs at 

runtime without pruning the initial fault list. 

3. MeRLiN METHODOLOGY 
Our methodology consists of three phases: Preprocessing, 

Fault List Reduction and Fault Injection Campaign as 

shown in Figure 2. We describe the three phases in the fol-

lowing subsections. 

3.1 Preprocessing 

This first phase includes two tasks. First, MeRLiN records 

all vulnerable intervals of all entries of a hardware structure 

during the entire benchmark execution; this is the ACE-like 

analysis step. Then, MeRLiN creates the initial fault list 

repository that consists of a large number of faults for a 

statistically significant sampling: very low error margin 

and very high confidence level [26]. 

3.1.1 ACE-like analysis 

During this first task, the benchmark runs once to comple-

tion to profile the vulnerable intervals (in which a bit flip 

may lead to corruption) of each entry of the target hardware 

structure (e.g. the registers in a physical register file). For 

our analysis, a vulnerable interval of an entry: 

 Starts with a write operation and ends with a committed 

read of the same entry; 

 Starts with a committed read and ends with another 

committed read of the same entry.  

benchmark configuration param.
• number of entries 

• execution time 

• error margin 

• confidence level

ACE-like analysis

initial fault list

1st step: Grouping according to 

RIP and uPC

group Ngroup 1 group 2 group 3
. . .

2nd step: Grouping according to byte position

reliability estimation

Preprocessing

Fault

List Reduction

Fault 

Injection 

Campaign

vulnerable intervals

groupMgroup 1 group 2 group 3 . . .

fault injection & parsing

reduced fault list

 
Figure 2: Flowchart of MeRLiN. 

This definition differs from the typical definition of 

ACE intervals [15, 17] (where intermediate reads do not 

define the end of an interval) but the overall vulnerable 

time (sum of vulnerable intervals) is the same. Note that, 

similar to the original ACE analysis wrong-path execution 

instructions are not considered as part of the vulnerable 

intervals of MeRLiN. We highlight this difference between 

the two methods by an example in Figure 3, which repre-

sents the lifetime of an entry during the execution of a 

benchmark. The arrows directed upwards and downwards 

represent read and write operations, respectively. The read 

operations at t2, t5 and t6 are finally squashed. MeRLiN 

divides the interval between t7 and t9 in two individual 

vulnerable intervals, while ACE analysis considers them as 

a single interval. 

This difference between MeRLiN’s first step and classic 

ACE analysis is very important for the second phase of 
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MeRLiN, where the faults are grouped with respect to the 

instruction pointer (RIP) and the micro program counter 

(uPC) of the committed read that accesses the entry at the 

end of the vulnerable interval. Our analysis requires both 

the RIP and the uPC to cover cases where an x86-64 in-

struction consists of different micro-instructions that access 

the same or different entries of the hardware structure in 

the same or different cycles. These accesses can lead to 

different fault effects and are classified separately.  

Our ACE-like analysis is significantly lighter in terms 

of storage overhead (10-100MB in our experiments) and 

more easily implemented than the complete ACE, because 

it does not trace the transitively dynamically dead (TDD) 

instructions [15]. The execution time of the ACE-like sin-

gle-run step was less than 5 hours for all our experiments. 

At the end of this step, the following information is 

stored in the vulnerable intervals repository for every ACE-

like vulnerable interval of each entry: (i) start and end of 

the interval (cycle numbers), (ii) the instruction pointer 

(RIP) of the static x86-64 instruction that reads an entry at 

the end of the interval, and (iii) the micro program counter 

(uPC) of the micro-operation which is part of the x86 in-

struction and reads an entry at the end of the interval. 

t1 t2 t3 t4 t5 t6 t7 t8 t9

squashedACE interval ACE interval

MeRLiN’s ACE-like

interval

time

MeRLiN’s ACE-like

interval

MeRLiN’s ACE-like

interval

 
Figure 3: ACE and ACE-like intervals definition example. 

3.1.2 Initial Fault List Creation 

In the second task of the first phase, MeRLiN creates the 

initial fault list repository according to the statistical sam-

pling described in [26]. The initial faults population is de-

fined by: (1) the size (in bits) of the hardware structure, (2) 

the total execution time (in cycles) of the benchmark, (3) 

the statistical confidence level and (4) the statistical error 

margin. To achieve high statistical significance, the initial 

fault list should consist of tens or hundreds of thousands of 

faults. For instance, an injection campaign targeting a 256-

entry integer register file of 64-bit registers with error mar-

gin 2.88%, confidence level 99% and 100M cycles of pro-

gram execution time, requires 2000 fault injection runs 

[26]. If a higher statistical significance is needed (i.e. 

0.63% error margin and 99.8% confidence level), the total 

number of injection runs explodes to 60,000 (an unaccepta-

bly large number of injections even for relatively short 

benchmarks). We use this number of 60K faults to define 

the baseline injection campaign for each single component, 

size and benchmark configuration, ensuring the same or 

even slightly higher statistical significance for all our struc-

tures. According to [26], for estimations of high statistical 

significance the confidence level and the error margin dom-

inate in the calculation of the initial fault list population. 

The outputs of the first phase of MeRLiN are the vul-

nerable intervals repository and the initial fault list that 

feed MeRLiN’s second phase. 

3.2 Fault List Reduction 

This phase of MeRLiN classifies the faults in groups run-

ning a two-step grouping algorithm, and creates the re-

duced fault list that is used for the actual injections. 

3.2.1 1st step of group creation algorithm 

During the execution of the first step of the algorithm, all 

faults of the initial fault list are examined. All faults that 

target a non-vulnerable interval are directly classified as 

Masked as no injection is needed for them. The remaining 

faults that hit ACE-like vulnerable intervals are stored in 

different subdirectories (see Figure 2) according to the RIP 

and the uPC of the instruction that reads the entry at the 

end of the interval. Each of the created groups consists of 

transient faults on the same or different entries of the 

hardware structure being analyzed, during the same or dif-

ferent ACE-like vulnerable intervals that are read by an 

instruction with the same RIP and the same uPC. 

Figure 4 shows an informative example of this first step 

for three entries of a hardware component during the exe-

cution of the same benchmark. When this step finishes, 

four groups are created containing faults that hit different 

hardware entries at different time intervals. The faults with 

the same color belong to the same group. The faults belong-

ing to non-vulnerable intervals (gray color) are character-

ized as Masked. For instance, the faults in intervals t4-t6, 

t10-t13 and t7-t11 are grouped together (red color), because 

these intervals end up to micro-instructions with the same 

ripC and uPC3. 

t1 t2e
n

tr
y
A

e
n

tr
y
B

t3e
n

tr
y
C

t4

t9 t10 t13

t6 t8 t12

t5 t7 t11

group 1

group 1

group 1

group 2

group 2

group 3

group 4

rip A

uPC 0
rip D

uPC 3
rip C

uPC 3

rip C

uPC 3

rip A

uPC 0

rip B

uPC 1
rip C

uPC 3

time
 

Figure 4: 1
st
 step example of the grouping algorithm. 

3.2.2 2nd step of group creation algorithm 

Due to logical masking, all bits in a given faulty entry may 

not have the same effect when read by an instruction. To 
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maximize MeRLiN’s accuracy especially for groups with 

hundreds of faults, we select more than one fault for the 

actual fault injection runs in cases that faults hit a different 

byte of the entry. Moreover, faults in different bytes are 

selected from different dynamic instances of the same static 

instruction to increase time diversity. This can be further 

extended to separate faults hitting different nibbles or bits, 

but our experiments verify that this is not necessary. 

MeRLiN ensures that for static instructions that are cor-

related with large population of faults, several representa-

tives are selected from different dynamic instances of the 

same instruction, covering all possible byte positions of 

different entries. This per byte selection leads to smaller 

final groups ensuring the statistical significance of MeRLiN 

(see the theoretical analysis in Section 4.4.5), while it leads 

to groups of faults that are extremely likely to have the 

same effect. Figure 5 shows an example of the second step 

of the algorithm for three different hardware entries (K, L, 

M) during the execution of a benchmark. Note that all these 

faults were classified in the same group (same rip=F and 

uPC=4) from the first step of the grouping algorithm. The 

number next to each fault corresponds to the group in 

which the fault is finally classified at the end of the second 

step; the faults in circles are stored in the reduced fault list 

repository and are the only ones that will be injected. The 

execution time of the entire MeRLiN’s single-run group 

creation algorithm was less than 50 minutes for all our 

experiments.  

At the end of this phase, the reduced fault list repository 

contains all the selected faults. Only these faults are inject-

ed using the microarchitecture level fault injector. 
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Figure 5: 2

nd
 step example of the grouping algorithm. 

3.3 Fault Injection Campaign 

In the last phase of MeRLiN, the fault injection campaign 

is launched using all faults of the reduced fault list reposi-

tory. During the parsing step, the outputs of all the injec-

tion runs per reduced group are compared to that of the 

golden run to identify the fault effect and calculate the final 

reliability estimation of the structure. 

4. MeRLiN EVALUATION 

4.1 Microarchitecture level fault injector – GeFIN 

We employ GeFIN [13] a Gem5-based [35] microarchitec-

tural injector and extend it to implement and evaluate 

MeRLiN on three structures of an x86-64 out-of-order pro-

cessor: 

 The physical integer Register File (RF) for three sizes: 

256, 128, 64 registers.  

 The data field of the Store Queue (SQ) of the 

Load/Store Queue for three sizes: 64 load and 64 store, 

32 load and 32 store, and 16 load and 16 store entries. 

Gem5 doesn’t implement data fields in the Load Queue. 

 The data field of L1 data cache (L1D) for three sizes: 

64KB, 32KB and 16KB. 

MeRLiN can be used for: (i) all hardware structures of 

the CPU (caches, buffers, queues, registers, etc.), (ii) differ-

ent input sets and benchmarks, (iii) different architectures 

and ISAs. 

4.1.1 Configuration 

Table 1 shows the baseline microprocessor configuration of 

our experiments. For all the experiments, we used ma-

chines with Intel Core i7-4771 at 3.5GHz, 16GBytes of 

RAM at 1600MHz and 1TByte hard disk. 
Table 1: Baseline microprocessor configuration. 

Parameter x86 microprocessor model configuration 

Pipeline OoO 

Physical register file 256/128/64 int; 192 FP 

Issue Queue entries 32 

Load/Store Queue  64/32/16 load & 64/32/16 store entries 

ROB entries 100 

Functional units 
6 int ALUs; 2 complex int ALUs; 4 FP ALUs, 2 

FP mul/div, 4 SIMD 

L1 Instruction Cache 32KB,64B line,128 sets,4-way,write back 

L1 Data Cache 
16KB/32KB/64KB, 

64B line,64/128/256 sets,4-ways,write back 

L2 Cache 1MB,64B line,1024 sets,16-way,write back 

Branch Predictor Tournament predictor 

Branch Target Buffer 
conditional and unconditional branches BTB 

(direct-mapped, 4K entries) 

4.1.2 Fault effect classification 

For each injection run, we classify the fault effect in one of 

the six categories shown in Table 2. 
Table 2: Fault effect classification. 
Category Effect 

Masked Output and x86 exceptions were identical to the golden run 

SDC 
The output is corrupted, but there was no abnormal behavior 

of the simulation process or the x86 exceptions 

DUE 
Simulation process and output are not corrupted, but there 

were indications of extra x86 exceptions 

Timeout 

Includes program flow Deadlocks (not committing further 

instructions) and Livelocks (redirected but continuing to 

commit instructions) that exceed execution time  

of benchmarks by three times 

Crash 

Includes process (abnormal termination of simulated pro-

gram), system (full-system is unable to recover) and simulator 

(simulator process terminated abnormally) crashes 

Assert Simulator stopped due to assert instruction 
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4.2 Fault Sampling 

An exhaustive fault list at the microarchitecture level con-

sists of all flips for every bit of a hardware structure and for 

every program execution cycle. At the software the same 

list consists of bit flips in the operands of the assembly in-

structions; these faults are not correlated to the execution 

time of the program and the actual bits of the hardware. 

Table 3 presents a high-level quantitative comparison of 

Relyzer [45] and MeRLiN using as starting point the ex-

haustive fault list of the corresponding level of abstraction 

(first column). The second column shows the faults of the 

exhaustive list that remain for injection after the applica-

tion of each method, and the third column presents the 

gains (speedup) in terms of fault list reduction achieved by 

each method over the corresponding exhaustive list. The 

last two columns show the time needed to inject the exhaus-

tive list and the remaining faults in both methods, respec-

tively. Assume that we run one benchmark of 1 billion cy-

cles and we inject faults in the L1D (32KB), the SQ (16 

entries) and the RF (64 registers). The throughput of Gem5 

for full-system cycle-accurate simulation is 105 cycles/sec 

while for software emulation it is 106 cycles/sec [35]. MeR-

LiN delivers 5 orders of magnitude higher gains than Re-

lyzer having as starting point the exhaustive list, while it 

reports the reliability of the exhaustive list 10 orders of 

magnitude faster. 
Table 3: MeRLiN vs. Relyzer using exhaustive fault list. 

 
Exhaustive  

fault list 

 Remaining 

faults 
 Gain 

Evaluation 

time using 

exhaustive 

fault list 

Evaluation 

time using 

remaining 

faults 

MeRLiN 10
13

 10
3
 10

10
 ~3×10

9
 years 4 months 

Relyzer [45] 10
11 

10
6
 10

5
 ~3×10

6
 years 32 years 

Statistical fault sampling is unavoidable due to the huge 

number of faults in the exhaustive fault list. Thus, the ini-

tial fault list for each campaign of this paper was generated 

using statistical fault sampling [26] (Section 3.1.2) and 

consists of 60,000 faults (99.8% confidence level and 

0.63% error margin). To study the scalability of MeRLiN 

(Section 4.4.2.4), we used an initial fault list of 600,000 

faults (99.8% confidence level and 0.19% error margin). 

4.3 Benchmarks 

We employ 10 benchmarks from the MiBench suite [49] 

and 10 from the SPEC CPU2006 suite. We ran the 

MiBench benchmarks to the end to evaluate both MeR-

LiN’s accuracy and speedup. Their execution time ranges 

from 1 to 55 million cycles, while they are very similar in 

instruction mixes and throughput with SPECs. Thus, they 

have extensively been used in many reliability studies [13, 

14, 23, 25, 50]. In the case of SPEC benchmarks, we evalu-

ate MeRLiN running Simpoint samples of 100M committed 

instructions with the largest weight [51]. MeRLiN’s pur-

pose is not to propose new benchmark intervals sampling 

approach for reliability evaluation, but any existing ap-

proach can be used (e.g. [37] for large caches or Simpoints 

that were used in many reliability studies [15, 17, 19]). 

We selected to evaluate MeRLiN’s accuracy executing 

MiBench benchmarks till the end instead of running entire 

SPEC benchmarks, because the execution time of each 

baseline comprehensive injection campaign (60,000 faults 

for each entire SPEC program, component and configura-

tion) would make the evaluation infeasible. Also, we evalu-

ated the accuracy of MeRLiN at the end of the Simpoint 

intervals of two selected SPEC CPU2006 benchmarks 

(bzip2 and gcc) (Section 4.4.3.4).   

4.4 Results and Analysis 

We evaluate MeRLiN in terms of reliability estimation ac-

curacy and speedup against the comprehensive campaign 

and the ACE-like analysis. Then, we discuss Relyzer’s heu-

ristics if employed in MeRLiN’s concept. Finally, we ana-

lyze the statistical properties of MeRLiN. 

4.4.1 Homogeneity of fault effects 

First, to measure the effectiveness of our grouping algo-

rithm we define the homogeneity metric. In equation (1), N 

is the number of the groups that MeRLiN generates and 

#faults is the number of faults of a group. The dominant 

class of a group is defined as the category among those of 

Table 2 that contains the largest number of faults in the 

group. Thus, dominant_class% is the percentage of faults of 

the group that are classified in the dominant class. When 

dominant_class% equals 100%, it means that all the faults 

in that group have the same fault effect. Finally, #to-

tal_faults is the total population of faults that hit vulnerable 

intervals. Large values of homogeneity close to 1.0, denote 

that the vast majority of faults across all groups lead to the 

same effect, and the accuracy of the algorithm is high. 
groupN

group1

#faults × dominant _ class%

 = 
#total_ faults × 100%

homogeneity


           (1) 

Figure 6 shows the homogeneity for all our experiments 

running the 10 MiBench. On the average, the highest ho-

mogeneity for the RF is 0.940, for the SQ is 0.982 and for 

L1D is 0.920. In general, the homogeneity values are very 

high for this fine-grained classification (the 6 classes). If 

homogeneity is calculated in coarser granularity (masked 

vs. not-masked faults) and all classes that lead to non-

masking are combined together, then homogeneity is even 

larger; see the values at the top of each bar in Figure 7. In 

Figure 7 the value at the bottom of each bar represents the 

percentage of groups (average for all our experiments with 

MiBench) that consist of faults with exactly the same effect 

(masked, non-masked) meaning that they have a perfect 

homogeneity value of 1.0. Finally, homogeneity climbs to 

0.99 if we count the faults excluded by the ACE-like, but 

here we focus only on MeRLiN’s grouping part. All these 

results indicate the extremely high accuracy of MeRLiN. 
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Figure 7: Coarse-grained homogeneity (top of bars) and per-

centage of groups with perfect homogeneity (equal to 1.0) 

(bottom of bars); average for 10 MiBench. 

4.4.2 Speedup 

We evaluate the speedup of MeRLiN against the compre-

hensive baseline fault injection campaigns (60,000 faults). 

4.4.2.1 MiBench benchmarks 

Figure 8 presents the speedup of the method for 256, 128 

and 64 physical registers for the 10 MiBench benchmarks. 

The lower (blue) segment and the value on top of it indicate 

the speedup compared to the comprehensive baseline injec-

tion method (60,000 faults) after the first ACE-like pass. 

The higher (red) segment of each bar indicates the speedup 

achieved by the grouping algorithm on top of the first ACE-

like step. The value on top of the red bar represents the 

final speedup achieved by MeRLiN. For example, for 64 

registers and the qsort benchmark the ACE-like step reduc-

es the initial fault list by 4.1X (60,000/14,757). The re-

maining 14,757 faults are further reduced by the grouping 

algorithm to 1126 faults that should be actually injected; 

this totally corresponds to 53.3X (60,000/1126) reduction 

of the initial fault list. The average speedups are 93.1X, 

62.1X and 43.7X for 256, 128 and 64 registers, respective-

ly. Similarly, Figure 9 and Figure 10 present the speedup 

for the store queue and the data cache, respectively. The 

average speedups for the store queue are 224.9X, 186.7X 

and 146.9X for 64, 32 and 16 entries respectively, while for  

 

the data cache they are 67.9X, 61.6X and 59.0X for 64KB, 

32KB and 16KB respectively.  

4.4.2.2 Actual Estimation Time running MiBench 

Figure 11 depicts the actual time required for the fault in-

jection campaigns in the three structures with the compre-

hensive fault injection method (60,000 faults per campaign; 

blue bars) and MeRLiN method (red bars) for all MiBench 

benchmarks and all component configurations. We assume 

that all injections run sequentially in the same machine.  
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Figure 11: Actual reliability estimation times of the compre-

hensive baseline injection vs. MeRLiN for all structures con-

figurations of this study running 10 MiBench benchmarks. 

4.4.2.3 SPEC CPU2006 benchmarks 

To evaluate the efficiency of MeRLiN in terms of speedup 

in larger benchmarks, we ran Simpoint samples of 100M 

committed instructions with the highest weight from 10 

selected integer benchmarks of the SPEC CPU2006 suite 

assuming an initial fault list of 60,000 faults. We used the 

configuration of Table 1, with 128 physical integer regis-

ters, 16 store and 16 load queue entries and a 32KB L1 data 

cache. The results of the speedup that MeRLiN delivers are 

reported in Figure 12. MeRLiN leads to very high final 

speedups of 1644X, 2018X and 171X on average for the 

RF, the SQ and the L1D cache, respectively, which are 

higher than the speedups obtained for MiBench programs 

since the Simpoint samples we used for SPECs correspond 

to the most representative part of their execution. 

Figure 6: Fine-grained homogeneity of fault effects in the RF, SQ and L1D for 10 MiBench benchmarks; using 6 classes of Table 2. 
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Figure 8: MeRLiN speedup for the three sizes of the Physical Integer Register File running 10 MiBench benchmarks. 

Figure 12: MeRLiN speedup for the Register File (RF), Store Queue (SQ), and L1 data cache (L1D) running 10 SPEC CPU2006. 

Figure 10: MeRLiN speedup for the three sizes of the L1 data cache running 10 MiBench benchmarks. 

Figure 9: MeRLiN speedup for the three sizes of the Store Queue running 10 MiBench benchmarks. 
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4.4.2.4 Scaling of the MeRLiN method 

The higher the statistical significance of the initial fault list 

the larger the speedup that MeRLiN offers. In our initial set 

of campaigns, we ran all MiBench benchmarks using 

60,000 faults per campaign (99.8% confidence level and 

0.63% error margin). To stress MeRLiN even further, we 

repeated all these campaigns using a huge 10 times larger 

initial list of 600,000 faults (99.8% confidence level and 

0.19% error margin)5. Figure 13 presents the average 

speedup achieved for these two sets of campaigns by the 

ACE-like (lower purple segment of each bar) and the 

grouping step (upper white segment) of MeRLiN, as well as 

the final speedup achieved (value on top of each bar) for 

each configuration. The final speedup was scaled up 3.46 

times on average; practically meaning that for a 10 times 

increase of the initial fault list, MeRLiN finally applies only 

2.89 times more faults.  

69.2 70.1 69.5

298.0
252.8

200.5
130.2

81.3 60.9

348.5 303.8
292.6

929.5

686.5

547.3

367.1

259.6
183.7

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

6
4
K

B

3
2
K

B

1
6
K

B

6
4
e

n
tr

ie
s

3
2
e

n
tr

ie
s

1
6
e

n
tr

ie
s

2
5
6

re
g
s

1
2
8

re
g
s

6
4
re

g
s

6
4
K

B

3
2
K

B

1
6
K

B

6
4
e

n
tr

ie
s

3
2
e

n
tr

ie
s

1
6
e

n
tr

ie
s

2
5
6

re
g
s

1
2
8

re
g
s

6
4
re

g
s

L1D SQ RF L1D SQ RF

Error margin 0.63% Error margin 0.19%

S
p

e
e

d
u

p

Speedup from ACE-like Speedup from Grouping
 

Figure 13: MeRLiN speedup scaling for 0.63% (60K faults) 

and 0.19% error margin (600K faults); 10 MiBench average. 

4.4.3 Reliability Estimation Accuracy 

We measure the accuracy of the reliability estimations of 

MeRLiN for the three components running 10 MiBench 

benchmarks till the end. We compare MeRLiN's accuracy 

against the injection in: (i) the remaining fault list after the 

exclusion of the faults that target non-vulnerable intervals 

(identified by the ACE-like step of the method), (ii) the 

comprehensive baseline fault list (60,000 faults). Finally, 

we evaluate MeRLiN’s accuracy for the RF with 60K faults 

using Simpoints from the bzip2 and the gcc. 

4.4.3.1 Accuracy in the remaining fault list after ACE-like 

The estimation accuracy of MeRLiN for the three structures 

of this study against the injection using the remaining fault 

list after the ACE-like step is shown in Figure 14. Each 

graph shows the average fault effect classification across 

the 10 MiBench benchmarks used in our study for the three 

configurations of each structure. The first bar (blue) in each 

class corresponds to the results of the fault injection in the 

remaining fault list after the ACE-like analysis, while the 

                                                        
5  In all our experiments we round up the number of injections (60,000 and 

600,000) instead of rounding the error margins. 

second bar (red) illustrates the results on the same fault list 

after applying MeRLiN’s grouping algorithm and injecting 

only the selected faults. The values on top of each bar rep-

resent the measurement per fault effect category. Similar 

behavior is observed across all benchmarks. For all compo-

nent configurations, MeRLiN reports negligible differences 

compared to the injection using all the faults that hit only 

vulnerable intervals. 
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Figure 14: Classification of MeRLiN against injection with 

the remaining faults after ACE-like step for the RF, SQ, L1D. 

4.4.3.2 Accuracy in the comprehensive list of 60K faults 

Figure 15 shows the bigger picture for MeRLiN’s accuracy, 

in which the final fault effect classification of the compre-

hensive baseline fault injection of 60,000 faults (blue bar) is 

compared to the final classification of MeRLiN (red bar). 

Each bar represents the average values across the 10 

MiBench benchmarks. Similar behavior is observed across 

all benchmarks. MeRLiN for all cases is extremely accurate 

and delivers virtually the same reports with the comprehen-

sive injection, but orders of magnitude faster.  



ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Kaliorakis et al. 

9
7
.4

4
%

0
.5

2
%

0
.0

3
%

0
.1

4
%

1
.8

6
%

0
.0

1
%

9
5
.1

9
%

0
.9

6
%

0
.0

4
%

0
.2

8
%

3
.5

2
%

0
.0

1
%

9
1
.0

8
%

1
.5

3
%

0
.0

5
%

0
.8

4
%

6
.4

8
%

0
.0

2
%

9
7
.4

8
%

0
.5

4
%

0
.0

2
%

0
.1

2
%

1
.8

3
%

0
.0

1
%

9
5
.1

8
%

0
.9

0
%

0
.0

3
%

0
.2

6
%

3
.6

3
%

0
.0

0
%

9
1
.5

6
%

1
.2

6
%

0
.0

5
%

1
.0

1
%

6
.1

0
%

0
.0

2
%

0%

20%

40%

60%

80%

100%

120%
M

a
s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

256regs 128regs 64regs

Final Fault Effect Classification of Register File 
(average for 10 MiBench benchmarks)

Comprehensive Baseline Fault Injection (60,000 faults) MeRLiN  

9
7

.8
2

%

1
.6

9
%

0
.0

4
%

0
.0

2
%

0
.4

3
%

0
.0

0
%

9
7

.3
3

%

1
.8

7
%

0
.0

5
%

0
.0

3
%

0
.7

2
%

0
.0

0
%

9
7

.3
4

%

1
.3

9
%

0
.0

6
%

0
.0

6
%

1
.1

4
%

0
.0

1
%

9
7

.8
8

%

1
.6

4
%

0
.0

4
%

0
.0

3
%

0
.4

1
%

0
.0

0
%

9
7

.3
7

%

1
.8

2
%

0
.0

4
%

0
.0

4
%

0
.7

3
%

0
.0

0
%

9
7

.4
4

%

1
.3

1
%

0
.0

6
%

0
.0

6
%

1
.1

2
%

0
.0

1
%

0%

20%

40%

60%

80%

100%

120%

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e
rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

64 entries 32 entries 16 entries

Final Fault Effect Classification of Store Queue
(average for 10 MiBench benchmarks)

Comprehensive Baseline Fault Injection (60,000 faults) MeRLiN  

8
0
.9

8
%

1
5

.8
9

%

0
.4

9
%

0
.3

3
%

2
.2

7
%

0
.0

4
%

7
6
.5

8
%

1
9

.8
8

%

0
.4

4
%

0
.5

4
%

2
.5

3
%

0
.0

3
%

7
7

.8
5

%

1
8

.3
8

%

0
.2

3
%

0
.6

0
%

2
.9

1
%

0
.0

3
%

8
2

.1
4

%

1
4

.5
1

%

0
.6

1
%

0
.5

1
%

2
.1

9
%

0
.0

4
%

7
6

.2
9

%

2
0

.2
4

%

0
.3

2
%

0
.5

3
%

2
.5

9
%

0
.0

3
%

7
6

.9
0

%

1
9

.7
6

%

0
.0

9
%

0
.5

2
%

2
.7

0
%

0
.0

3
%

0%

20%

40%

60%

80%

100%

120%

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

M
a
s
k
e
d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e
rt

M
a

s
k
e

d

S
D

C

D
U

E

T
im

e
o

u
t

C
ra

s
h

A
s
s
e

rt

64 KB 32 KB 16 KB

Final Fault Effect Classification of L1 data cache
(average for 10 MiBench benchmarks)

Comprehensive Baseline Fault Injection (60,000 faults) MeRLiN  
Figure 15: Final classification of MeRLiN against comprehen-

sive baseline injection (60,000 faults) for the RF, SQ, L1D. 
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Figure 16: Final reliability assessment (FIT) for RF, SQ, and 

L1D (average for 10 MiBench benchmarks). 

4.4.3.3 Final Reliability Assessment (FIT) 

Figure 16 demonstrates the final reliability estimation in 

Failures-in-Time (FIT) rates for the comprehensive base-

line campaign (60,000 faults), the MeRLiN method and the 

ACE-like method running the 10 MiBench benchmarks to 

the end. The reported FIT rates are the products of AVF, 

raw FIT rate and number of structure's bits. The AVF of the 

injection-based methods is the ratio of the non-masked in-

jections over the total injections, while the AVF of the 

ACE-like is measured as in [15]. Any raw FIT rate can be 

used; we use 0.01 FIT per bit.  

MeRLiN reports negligible differences compared to the 

comprehensive baseline injection, while the ACE-like de-

livers a pessimistic lower bound of structures' reliability. 

4.4.3.4 Accuracy using SPEC CPU2006 benchmarks 

The evaluation of MeRLiN’s accuracy for SPEC CPU2006 

benchmarks executed until the end in detailed microarchi-

tectural simulation mode is infeasible as was discussed in 

Section 4.3. To overcome this difficulty and in order to 

evaluate the accuracy that MeRLiN provides for SPEC 

CPU2006 benchmarks, we applied MeRLiN injecting faults 

in the physical register file for the gcc and bzip2 bench-

marks and terminating the fault injection runs at the end of 

the Simpoint interval. The configuration for these experi-

ments is the one of Table 1, with 128 physical registers, 16 

store and 16 load queue entries and a 32KB L1 data cache. 

As we do not execute the fault injection runs to the end, 

we are not able to identify SDCs, timeouts or any other ab-

normal behavior after the end of the Simpoint interval. 

Thus, only for these experiments we used a different fault 

effect classification than the classification presented in Ta-

ble 2. The classification consists of the following catego-

ries: (i) Masked; indicates a fault that was not over-written 

or hit a non-vulnerable interval without affecting program 

execution, (ii) DUE (as in Table 2), (iii) Crash (as in Table 

2), (iv) Assert (as in Table 2), and (v) Unknown; indicates 

a fault that still exists but at the end of the Simpoint inter-

val it is not known if it will eventually be classified in one 

of the previous classes or if it will lead to an abnormal be-

havior. 

Table 4 summarizes our measurements per fault effect 

category using MeRLiN and the comprehensive baseline 

fault list of 60K faults for the two benchmarks. In both cas-

es, MeRLiN delivers very accurate results per fault effect 

category compared to the comprehensive baseline method, 

while the maximum inaccuracy that was observed is only 

1.11 percentile points for the Unknown category of the 

bzip2 benchmark. 

 
Table 4: MeRLiN’s accuracy for gcc and bzip2 benchmarks. 

Category 
gcc  

(MeRLiN) 

gcc  

(baseline 

60K faults) 

bzip2  

(MeRLiN) 

bzip2 

(baseline 

60K faults) 

Masked 85.08% 85.08% 84.98% 84.98% 

DUE 0.06% 0.07% 0.29% 0.81% 

Crash 3.67% 3.13% 3.50% 4.10% 

Assert 0.01% 0.01% 0.03% 0.02% 

Unknown 11.18% 11.71% 11.20% 10.09% 
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4.4.4 Analysis of Relyzer’s heuristics 

Both MeRLiN and Relyzer prune faults of the initial fault 

list being injected at different levels of the system stack. 

Thus, in this section we analyze the applicability of Relyzer 

heuristics at the microarchitecture level injection. 

Bounding addresses: It prunes faults in the address 

field of store and load instructions if the valid address space 

is violated. This heuristic requires an unaffordable amount 

of memory to track the addresses in data related structures 

(e.g. caches). Also, MeRLiN provides finer grained effect 

classification for non-masking categories (Table 2) and is 

not limited to symptom-based techniques. 

Def-use: It prunes faults in the destination architectural 

register of an instruction followed by another instruction 

that consumes this value, as these faults will have the same 

effect. Store-equivalence is similar to the def-use for store 

and load instructions. These two heuristics cannot be ap-

plied at the microarchitecture level of our work. The desti-

nation register of an instruction and the source register of a 

subsequent correspond to the same physical entity [47]. 

Control-equivalence: Software analysis using basic 

blocks tracks the control flow paths of all the dynamic in-

stances of all the static instructions to separate Masked 

from SDC faults [46]. For each path Relyzer randomly 

chooses only one pilot. To evaluate this heuristic, we ran 

the 10 MiBench to the end with 128 registers, 16 SQ en-

tries and 32KB L1D. Exhaustive fault injection is infeasi-

ble; thus, we used the remaining faults (from 60,000 initial 

faults) after the pruning by our ACE-like step. We used a 

control flow path depth of 5, exactly as Relyzer does [45]. 

In terms of speedup, MeRLiN slightly prevails on aver-

age in the RF (62.1X compared to 60.5X) and the L1D 

(60.1X compared to 59.1X), while for the SQ, MeRLiN 

provides 146.9X speedup compared to 150.6X of Relyzer's 

heuristic. Figure 17, illustrates the results of the compari-

son in terms of inaccuracy in percentile units compared to 

the injection using the same fault list.  

A source of Relyzer’s inaccuracy is the static instruc-

tions with large population of faults that are represented by 

only one randomly selected pilot. In [45], 52% on average 

of all static instructions have only 1 pilot. We measured 

that Relyzer leaves 9% of the groups correlated to a static 

instruction with large population of faults (more than 100 

faults) with only 1 pilot, while MeRLiN leaves less than 

2%. The heuristic of Relyzer if applied to our statistical 

concept selects only one pilot for code loops with large 

number of iterations. Assume a for-loop with 1000 itera-

tions that consists of only one static instruction with only 

two control flow paths with 995 and 5 instances, respective-

ly. Due to statistical sampling all faults may come only 

from the first path. In this case, Relyzer chooses only one 

pilot for this loop. On the contrary, MeRLiN, due to the 

homogenous distribution of faults, chooses more than one 

from different bytes and dynamic instances. These large 

loops exist in most program execution phases, including 

initialization and output phase that are not examined by 

[45]. Despite of Relyzer’s indisputable merit in software 

resilience, this heuristic of Relyzer is not so efficient to be 

employed in our concept. 
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Figure 17: Inaccuracy of MeRLiN and Relyzer vs. injection 

with the remaining faults after ACE-like;avg. for 10 MiBench. 

4.4.5 Theoretical analysis of MeRLiN 

In this section we analyze the statistical behavior of MeR-

LiN comparing the mean and the variance of the AVF 

measurements it reports to the corresponding mean and 

variance of the comprehensive fault injection campaign. 

We assume that soft errors affecting the microprocessor bits 

follow a normal distribution [26]. A fault injection cam-

paign can be described as a binomial experiment of F indi-

vidual injections, each of which has a probability of success 

(program is affected) or failure (program is not affected; 

fault is masked). Thus, the AVF measurement k (0 ≤ k ≤ 1) 

in our case means that k·F faults are Not-Masked.  

MeRLiN’s first phase prunes a fraction m (0 ≤ m ≤ 1) of 

the F faults that are guaranteed masked: m·F. The remain-

ing (1–m)·F faults (which now contain all k·F Not-Masked 

faults of the initial list of F faults) are forwarded to the sec-

ond phase of MeRLiN (grouping). This second phase pro-

duces n groups of faults with sizes si (i=1, 2, … , n). The 

sum of the group sizes is equal to the number of faults 

passed to the second phase: s1 + s2 + … + sn = (1–m)·F.  

When the comprehensive injection campaign (without 

MeRLiN) is applied, all F faults are injected and the out-

come r of each run is observed (Not-Masked=1 or 

Masked=0). In this case, the AVF (k) is6: 

1 1

isn
j

i

i j

r

k
F

 



 

We assume that the probability of Non-Masking within 

a group i is pi. Within a group i, all faults have the same 

                                                        
6
 We could consider as group 0 with size s0= m·F the group of faults from 

MeRLiN’s pre-processing step but since all faults of this group are masked, 

i.e. r=0, this group is not needed in the calculations. 
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probability pi because of MeRLiN’s grouping criterion: 

faults in a group hit the same byte of the entries during a 

vulnerable interval that ends with the same instruction that 

reads the entry. The results of Figure 7 show the validity of 

this assumption; they indicate that the vast majority of 

groups have homogeneity close to 1.0 (considering only the 

masked and non-masked categories) and that the percent-

age of groups with perfect homogeneity is very large in all 

cases. Across groups, probabilities pi are different since the 

groups correspond to faults eventually read by different 

instructions. The mean (expected value; E) of the AVF 

measurement k in the comprehensive campaign is7:  

1 1 1 1 1 1 1
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i i is s sn n n n
j j
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r E r p s p
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When MeRLiN is employed it delivers a new AVF 

measurement kMeRLiN. For each run r of the selected fault 

from a group i all faults are assumed to have the same re-

sult (1=Not-Masked, 0=Masked). So, the true measurement 

in this case is si ri for each group i and the new AVF kMeRLiN 

is: 

1
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, which has a mean  
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therefore, MeRLiN reports AVF with the same mean value 

as the original comprehensive set of F fault injections. Τhe 

variance of the AVF measurements k and kMeRLiN is shown 

in the following equations8: 
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The values of both 2( )k and 2( )MeRLiNk  are very small 

(several orders of magnitude smaller than the means of k 

                                                        
7
 We use the linearity property of the means of independent variables which 

holds for binomial distribution. The mean of a binomially distributed varia-

ble is E(X) = n p with n experiments and p success probability.  
8
 We use the relation 2 2 2 2 2( ) ( ) ( )a X b Y a X b Y          for the vari-

ances of independent variables. Group 0 has zero variance.  

and kMeRLiN, respectively) for two reasons: (a) the groups 

generated by MeRLiN are very homogeneous (thus either pi 

or (1–pi) is zero or is very small) as shown in Section 4.4.1 

and (b) the sizes of the groups (si values) are very small 

compared to F. In our experiments, the average size of a 

MeRLiN group is always less than100 and typically ranges 

between 5 and 40. Thus, with simple calculations on the 

above equations the variance of the initial AVF value when 

F consists of 60K faults is about 8 to 10 orders of magni-

tude smaller than the mean. Therefore, the multiplication 

with the si values in the variance of MeRLiN’s AVF meas-

urements 2( )MeRLiNk keeps this variance from 6 to 8 orders 

of magnitude smaller than the mean (assuming si values up 

to 100): still a very small variance, only slightly increased 

compared to the initial one. 

Overall our analysis shows that the AVF measurement 

of MeRLiN has the same mean as the comprehensive ex-

periment of F injections, while both have a very small vari-

ance. These two statistical properties make them almost 

statistically equivalent although MeRLiN reports AVF in 2 

to 3 orders of magnitude shorter time. 

5. CONCLUSIONS 
We presented MeRLiN, a methodology to accelerate com-

prehensive, statistically significant microarchitecture level 

fault injection campaigns on hardware structures modeled 

in performance simulators. MeRLiN's effectiveness is based 

on the combination of the principle of dynamic instruction 

repetition and the identification of the non-vulnerable in-

tervals for the entries of the hardware structures. We 

demonstrated its efficiency using microarchitecture level 

fault injection on a Gem5 model of a contemporary micro-

processor. We reported results for the method's speedup, 

accuracy, and scaling for different sizes of the physical reg-

ister file, store queue and first level data cache. 

MeRLiN achieves several orders of magnitude speedup 

(reduction of the number of injections) while it virtually 

delivers the same reliability measurements compared to 

exhaustive (but computationally infeasible) fault injection 

campaigns. Our experimental results and theoretical analy-

sis validate MeRLiN’s accuracy. 
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