Demystifying Soft Error Assessment Strategies on
ARM CPUs: Microarchitectural Fault Injection vs.
Neutron Beam Experiments

Athanasios Chatzidimitriou” Pablo Bodmann®

George Papadimitriou

+

Dimitris Gizopoulos”  Paolo Rech”

"Dept. of Informatics and Telecommunications, University of Athens, Athens, Greece
{achatz | georgepap | dgizop}@di.uoa.gr
*PPGC, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
{prjbodmann | prech} @inf.ufrgs.br

Abstract—Fault injection in early microarchitecture-level sim-

ulation CPU models and beam experiments on the final physical
CPU chip are two established methodologies to access the soft
error reliability of a microprocessor at different stages of its
design flow. Beam experiments, on one hand, estimate the
devices expected soft error rate in realistic physical conditions
by exposing it to accelerated particles fluxes. Fault injection in
microarchitectural models of the processor, on the other hand,
provides deep insights on faults propagation through the entire
system stack, including the operating system. Combining beam
experiments and fault injection data can deliver deep insights
about the devices expected reliability when deployed in the field.
However, it is yet largely unclear if the fault injection error rates
can be compared to those reported by beam experiments and
how this comparison can lead to informed soft error protection
decisions in early stages of the system design.
In this paper, we present and analyze data gathered with
extensive beam experiments (on physical CPU hardware) and
microarchitectural fault injections (on an equivalent CPU model
on Gem5) performed with 13 different benchmarks executed on
top of Linux on an ARM Cortex-A9 microprocessor. We combine
experimental data that cover more than 2.9 million years of
natural exposure with the result of more than 80,000 injections.
We then compare the soft error rate estimations that are based
on neutron beam and fault injection experiments. We show that,
for most benchmarks, fault injection can be very accurately
used to predict the Silent Data Corruptions (SDCs) rate and
the Application Crash rate. The System Crash rate measured
with beam experiments, however is much larger than the one
estimated by fault injection due to unknown proprietary parts
of the physical hardware platform that can’t be modeled in the
simulator. Overall, our analysis shows that the relative difference
between the fofal error rates of the beam experiments and the
fault injection experiments is limited within a narrow range of
values and is always smaller than one order of magnitude. This
narrow range of the expected failure rate of the CPU provides
invaluable assistance to the designers in making effective soft
error protection decisions in early design stages.

Index Terms—CPU reliability, soft errors, failures in time,
neutron beam, fault injection, microarchitecture simulation

I. INTRODUCTION

Reliability has become one of the main constraints for
computing devices employed in several domains, from High
Performance Computing (HPC) to automotive, military, and

aerospace applications [1]-[3]. Reliability has been identified
by the U.S. Department of Energy (DOE) as one of the ten
major challenges for exascale performance computing [1].
In fact, a lack of understanding or the underestimation of
devices and applications error rate may lead to lower scientific
productivity of large scale HPC servers, resulting in significant
monetary loss [4]. When the computing device is integrated in
cyber-physical systems such as cars, airplanes, or Unmanned
Aerial Vehicles (UAVs), high reliability becomes mandatory
and unexpected errors should be strictly avoided.

While errors that may undermine the reliability of a com-
puting system can come from a variety of sources such as
environmental perturbations, manufacturing process, temper-
ature, and voltage variations [5]-[7], we focus on radiation-
induced effects since they have been found to be the main
reliability threat in commercial devices [8]. Such soft errors
may corrupt data values or logic operations and lead to Silent
Data Corruption (SDC), crashes, or can be masked and cause
no observable error [9]-[11].

To be useful and effective any method for the chip’s
reliability evaluation must be both fine grain (i.e., providing
full visibility and understanding of faults effect in the microar-
chitecture and the software stacks) and realistic. A fine grain
evaluation is employed to capture a clear understanding of the
causes and effects of faults, to identify the most vulnerable
parts of the hardware or software, and to observe how raw bit
flips propagate through the system stack. A realistic evaluation
ensures a correct prediction of the expected error rate of the
device when used in the field and provides realistic models of
the faulty behavior. The fine grain and realistic evaluation of
the reliability of Commercial Off-The-Shelf (COTS) devices,
that became increasingly common in both safety-critical and
HPC applications, is challenging as information about the
architecture and device characteristics is typically very limited.

Beam experiments are the most realistic way to measure
the error rate of a code or device in conditions that are as
close as possible to the actual ones after system deployment.
However, beam experiments are coarse grain, i.e., errors can be
observed only when they manifest at the application output or



when they compromise the system responsiveness. There is no
information about the spatial/temporal location of the original
fault and no information on its propagation pattern through
the microarchitecture, the system software or the application
software layers. It is, therefore, hard to identify the most
vulnerable hardware resources or software code portions and
to extend/generalize results to other applications or devices
when relying on beam experiments only.

Fault injection on models of a microprocessor at different
detail levels (architecture, microarchitecture, register-transfer,
transistor) has been extensively used to evaluate the vul-
nerability of hardware architectures and software codes. By
injecting faults in the hardware blocks of a microprocessor or
particular parts of a software code it is possible to measure
the probability for faults to impact the application output or
the system responsiveness, i.e., the Architectural Vulnerability
Factor, AVF [12]. Fault injection can then identify codes, code
portions, or architectural resources which are more likely,
once corrupted, to affect the system reliability. This infor-
mation is extremely useful to design dedicated and efficient
hardening solutions. It has been shown that fault injection
at the microarchitecture level is a very effective (fast and
accurate method) for early assessment of the reliability of
a microprocessor [13], [14]. However, faults can typically
be injected in a limited set of resources and, due to time
constraints, simplified errors models (such as single bit flip)
are usually adopted. In other words, if fault injection is not
validated or tuned with physical experimental data, the efforts
could potentially lead to imprecise results.

In this paper, we present data on 13 benchmarks executed on
the top of Linux on a ARM Cortex-A9 system. The extensive
beam experiment covers more than 2.9 million years of natural
exposure. Additionally, we inject more than 80,000 faults.
By combining beam experiments and microarchitectural fault
injection results we provide a reliability evaluation which is
both precise and realistic. Then, comparing the error rate pre-
dicted with beam experiments and fault injection, we evaluate
at which level fault injection can be used to emulate beam
experiment. To the best of our knowledge this is the first
reported comparison and analysis of the two popular methods
on top of an actual hardware and a detailed simulation model
of a widely employed CPU.

As a case study we choose the ARM Cortex-A9 architecture
as it was available in both a hardware platform (Xilinx
Zynq ZedBoard) and microarchitecture-level model (in Gem5).
Thanks to its high computing efficiency, ARM architecture
is actually used in the next computational core of many
supercomputers, including the new Sandia and Los Alamos
National Lab. clusters [15]. For the same reasons, embedded
architectures are attractive for safety-critical applications such
as autonomous vehicles or space exploration systems [16].

We select a wide and heterogeneous set of codes from the
MiBench suite [17]. The tested codes have different computing
characteristics and stimulate different resources. This allows us
to correlate the fault injection and beam experiment results
with the code characteristics and to extend, under certain

circumstances, the analysis to other algorithms with similar
characteristics. The codes are executed on the top of Linux to
simulate a realistic application and to show that our analysis
can give deep information on complex systems reliability.

The main contributions of this paper are: (1) an extensive
experimental evaluation of the reliability of ARM devices,
based on beam experiments; (2) a fault injection detailed
analysis of the vulnerability of codes executed on the top of
Linux in ARM A9 devices; (3) the comparison and discussion
of the error rate predicted through beam experiment and fault
injection.

The rest of the paper is organized as follows. Section II
discusses the background including details of the two reliabil-
ity assessment methodologies. Section III reports related work
from the literature to position our contributions. Section IV
presents a detailed description of the evaluation methodologies
(benchmarks, hardware, and software setups). In Section V we
combine the results of the experimentation with the two setups
and in Section VI we compare the findings and reports. Finally,
Section VII draws the conclusions of the paper.

II. BACKGROUND

In this section we briefly review the basic concepts of
radiation-induced effects in modern computing devices and the
most commonly used methodoloies to evaluate their reliability.

A. Radiation Effects in Electronic Devices

When a galactic cosmic ray interacts with the terrestrial
atmosphere, it triggers a chain reaction that generates a flux of
particles (mainly neutrons). About 13 neutrons/((cm?) x h)
reach ground [18]. A neutron strike may perturb a transistor’s
state, generating bit-flips in memory or current spikes in logic
circuits that, if latched, lead to an error [19]. A transient
error can have no effect on the program output (i.e., the fault
is masked, or the corrupted data is not used) or propagate
through the abstraction stack of the system leading to a Silent
Data Corruption (SDC), or unrecoverable behaviors such as a
program crash or device reboot.

The error rate of a code running on a computing device de-
pends on both the memory/logic sensitivity [20], [21] and the
probabilities for the fault to propagate through the architecture
or program [12], [22]. Hardening solutions can be applied at
different levels of abstraction (from transistor level to software
or system level) to reduce the faults probability of occurrence
or to avoid fault propagation.

B. Reliability Evaluation Methodologies

The evaluation of the error rate of a device is essential
to understand if the device meets the project’s reliability
requirement. Additionally, an early pre-silicon prediction of
the device error rate is useful to evaluate if the reliability needs
to be improved and to identify possible design vulnerabilities.

Realistic error rates can be measured exposing the real
hardware to controlled particles beams. By exposing the device
to particle beams, it is possible to mimic the effect of natural
radiation on the final system in the field. Thanks to the high



TABLE I
PERFORMANCE OF DIFFERENT ABSTRACTION LAYER MODELS [23], [24].
Abstraction Layer Model Performance
(Cycles/sec)
Software (native) Modern processors 2 x 109
Architecture Gem5 atomic model 2 x 107
Microarchitecture GemS5 detailed out-of-order model 2 x 10°
RTL NCSIM simulation 6 x 102

particles flux intensity, a statistically significant amount of data
is gathered in a short time. Moreover, the same kind of faults
that would impact the device in its application in the field
are injected in all physical hardware resources with realistic
probabilities. Unfortunately, beam experiments offer limited
visibility of fault propagation as faults are observed only
when they compromise the system functionality (corrupting
the output or crashing the application/system). With beam
experiments it is then very hard to correlate the observed
effects with their causes, limiting the identification of the
system most vulnerable parts. Additionally, beam experiments
can obviously be performed only on real hardware, after the
device project has been finalized.

Designs that need to comply with certain dependability
constraints require decisions to improve the reliability of the
system but without adding unnecessary overhead. Reliability
evaluation is intended also to support such decisions. It is
critical to have this analysis in time and as early as possible,
since any additional re-design iteration can lead to catastrophic
costs. As a result, early-reliability assessment is often per-
formed in models that exist prior to silicon prototypes, which
can be summarized as architecture level, microarchitecture
level and RTL. These vary in level of detail, with the most
abstract being available earlier in the design chain while
the most detailed (RTL) being available at the later stages.
Architecture-level models often lack most, if not all, of the
hardware details of the system, offering a software level
functional emulation, while microarchitecture-level includes
most functional and timing-accurate models of the microarchi-
tecture (pipeline, cache memories etc.), offering clock cycle
accuracy. In addition, most memory elements of the system
(including SRAMs, pipeline registers and flops/latches not
related to logic; e.g. state machines) are accurately modeled
in microarchitecture level. RTL offers a full description of
the implemented hardware, including the logic and SRAM
components. Simulation time for each abstraction layer is
proportional to the level of detail, with each detail step adding
approximately 2 orders of magnitude more simulation time;
the most detailed RTL model ends up being extremely slow.
Table I illustrates the simulation throughput of each abstraction
level.

Different reliability evaluation techniques can be applied
on top of each model, delivering different levels of detail
along with throughput. Probabilistic and statistical models
[25], [26] often require a single simulation to deliver a rough
estimation of the reliability, based on simulation statistics.

ACE analysis [12], [27]-[29] on the other hand tries to capture
more details on the residency and lifetime of workload critical
data on each vulnerable component of the system, and weight
their vulnerability against their sensitive exposure time. ACE
analysis often requires one or a few simulations to quantify
the vulnerability, but also requires additional development
effort in order to capture all of the systems complexity. ACE
analysis is claimed to have adjustable accuracy (proportional
to the effort) but the tradeoff between effort and speed should
always lean towards speed, otherwise more straight-forward
approaches can be used [30]. Statistical fault-injection is one of
the most widely adopted approaches of reliability assessment.
It offers the flexibility of variable accuracy (depending on the
size of statistical sample) while at the same time, it delivers
failure samples produced by simulation. On the drawback side,
the requirement of multiple simulations requires significant
amount of time and, depending on the model detail, it can
often be considered as unfeasible.

In this work we combine and compare the reliability eval-
uation performed using beam experiments and with statistical
fault injection on top of microarchitecture-level models. We
discuss at which level the pre-silicon reliability evaluation
performed on microarchitectural models provides similar data
when compared with beam experiments on real hardware.

Assuming fault injection and beam experiments are per-
formed on exactly the same hardware, software, and OS
configurations, there are still several reasons for beam and fault
injection FIT rates not to be identical and for neither of them
to be perfectly accurate if compared to the real device FIT
rate. Figure 1 visualizes the different sources of uncertainties
between the real FIT rate and the FIT rates measured with
beam experiments or predicted with fault injection and shows
the relative position of the reported FIT rates from each
approach.

As some device structures cannot be modeled (e.g. logic-
related latches), fault injection is likely to underestimate the
device FIT rate. Additionally, a simplified fault model (typi-
cally a single bit flip model) is normally used for injections,
which add additional uncertainty to the predicted error rates
because in actual hardware implemented in recent technologies
multiple bits may be flipped by a single particle strike.

When the real hardware is exposed to accelerated neutron
flux, the whole chip is irradiated and a much more realistic
behavior is modeled as neutrons hit the CPU chip. However,
some resources/interfaces in the test board which are not part
of the evaluated CPU are exposed to the beam and can be
corrupted causing unresponsiveness in the system. Such cases
can lead to an overestimation of the device under test FIT
rate estimation through beam testing. In addition, the particles
counts in the irradiation facility is not as precise as fault
injection. This could lead to experimental errors that add
uncertainty to beam results.

Finally, the real FIT rate of a device in the field depends
on both the device sensitivity and the particle flux at which it
is going to be exposed. Besides uncertainties in the sensitivity
evaluations, also the particle flux is subject to significant



L) *non-CPU Crashes
*particles counts imperfection
over-
estimation

- *real flux uncertainty

=1 S N A T Y *statistical error
) under-
% estimation
Fault *un-modeled structures
Beam True Injection *ai i
FIT EIT - simplified fault model
ol I 11
Fig. 1. Our motivation in comparing the different reliability evaluation

methodologies and reasons for over- and under-estimations.

variations depending on the environmental conditions. JEDEC
suggests to uses 13n/cm?/h as flux at NYC [18], but it also
states that the flux is dynamic and could significantly change
over time. It is worth noting that field tests (i.e. exposing a high
number of devices to the natural radiation) could potentially be
more accurate than beam experiments and fault injection [31],
[32]. However, a huge amount of devices and long time of
exposure is required to gather a statistically significant amount
of data, making field tests mostly unpractical.

In Section VI, as one of the main insights of our paper, we
discuss the differences between the FIT rate we measure with
beam experiments and microarchitectural fault injection and
link the discussion to the abstract concept shown in Figure 1.

III. RELATED WORK

In this section we present related works in the field of
reliability evaluation of modern devices through fault injection
and accelerated beam experiments.

Particle accelerators have been used for many years to mea-
sure and study the reliability of devices and applications [20],
[33]. Computing devices reliability has a strong tradition, mo-
tivated mainly by their use in safety-critical applications [9],
[34], [35].

ARM Cortex-A9 processors have been exposed to acceler-
ated particles beam and have been subjects and fault injection
in previous studies. In [36], [37], [38], and [39] authors
present beam experimental data on embedded ARM Cortex-
A9, propose hardening solutions, and discuss the impact of the
presence of an operating system in the application and device
reliability. [40] and [41] present results on architecture-level
fault injection of the processor core, while [42] includes a
microarchitecture-level fault injection on A9. [24] presents a
comparative reliability evaluation between microarchitecture
and RTL fault injection, for baremetal workloads running on
Cortex-A9, while [43], [44] also includes results of RTL fault
injection on ARM CPU cores. Apart from ARM processors,
fault injection on RTL was also used in [23], [28], [45].

Characterization of a full system using fault injection in ar-
chitecture level is presented in [46]-[51] with some works only
focusing on the vulnerability of the operating system. Some
high-level fault injection tools have also been developed in

TABLE II
SUMMARY OF SETUP ATTRIBUTES.

Property Beam Gem5
Microarchitecture Cortex-A9 Cortex-A9*
Platform Zynq 7000 VExpress
CPU cores 1* 1
L1 Cache 32 KB 4-way 32 KB 4-way
L2 Cache 512 KB 8-way | 512 KB 8-way
Kernel version 3.14 3.13

the past that offer generic and cross-ISA software assessment
[52], [53]. Microarchitecture level fault injection has been
used in various studies [13], [54], [55] for assessing reliability
on a hardware component basis, but also for capturing the
performance deviation cause by the presence of faults in
speculative components [56], [57]. There are also studies [58]—
[63] that spread their focus beyond a single abstraction layer
and aim to exploit the benefits of multiple abstraction layers to
either accelerate the evaluation process, or deliver cross-layer
reliability evaluation.

Some preliminary studies have proposed a comparison or
combination of different reliability evaluation techniques [23],
[28], [29], [39], [64], [65]. None of these works quantifies the
accuracy of the fault injection reliability evaluation against
the physical end product, considering the full system stack.
This is the first paper that both compare and combine beam
experiments and microarchitectural fault injection.

IV. METHODOLOGY

In this section we present the evaluation methodology for
the comprehensive comparative study of this paper. We first
describe the ARM CPU and the selected benchmarks we
execute on it. Then, we present the microarchitectural fault
injection framework and the neutron beam experiment setup.

A. Benchmarks and Devices

Our study is performed on an ARM®Cortex ™-A9 archi-
tecture embedded in a Xilinx Zyng™-7000 AP System on
Chip (SoC) implemented in a 28 nm CMOS technology and
simulated in Gem5 (details in Section IV-C). The hardware
device has two ARM cores operating at a maximum frequency
of 667 MHz. Each core has a 32 KB 4-way set-associative
instruction and data caches and a 512 KB 8-way set-associative
Level 2 cache, which is shared between the cores [67]. We
tuned the Gem5 model to resemble the physically available
one and we have disabled the second core of the SoC in order
to make the two evaluation setups as close as possible. The
Linux kernel version we have tested on the Zynq board is
3.14 [68] while for Gem5 the used version is 3.13. These
were the closest kernel versions that have been ported on
the two platforms and were selected in order to minimize the
operative system differences between the two setups. Table II
presents the main characteristics of the two setups. Asterisks
indicate two differences. First, Gem5 Resembles Cortex-A9
configuration, but the pipeline has some design differences
and, second, in the Zynq the second core is still physically
present, although disabled.



TABLE III
INPUT USED AND BENCHMARKS CHARACTERISTICS AS DESCRIBED IN [66].

BENCHMARK INPUT CHARACTERISTICS
CRC32 26.6 MB file CPU intensive
Dijkstra 100x100 Integer Adjacency matrix Control intensive, memory intensive
FFT a single floating point array with 32768 elements Memory intensive
Jpeg C 512x512 PPM image with size of 786.5 KB CPU intensive
Jpeg D 512x512 PPM image with size of 786.5 KB CPU intensive
MatMul 128x128 Single precision floating point Memory intensive
Qsort a list of 50K doubles Memory intensive and Control intensive
Rijndael E 3.2 MB file Memory intensive
Rijndael D 3.2 MB file Memory intensive
StringSearch 1332 words to search in 1332 sentences (1 word per sentence) | Memory intensive and Control intensive
Susan C 76x95 pixels, 7.3 KB CPU intensive
Susan E 76x95 pixels, 7.3 KB CPU intensive
Susan S 76x95 pixels, 7.3 KB CPU intensive

To have a broad analysis and avoid the bias of results on
specific applications, we have chosen benchmarks with dif-
ferent computational characteristics. The applications chosen
are part of mibench [66] testbench and are listed below. Table
IIT shows the input used and some characteristics for each
benchmark:

e CRC32: It calculates the corresponding 32-bit Cyclic
Redundancy check (CRC) of a given file input. CRC is
widely used in networks and storage devices in order to
detect unwanted changes in the data.

« Dijkstra: This benchmark calculates the shortest path be-
tween 2 nodes using a adjacency matrix of size 100x100.
100 paths are calculated during each execution.

o FFT: It performs the Fast Fourier Transform (FFT) on a
wave on a array of 32,768 floating point data. The FFT
is widely used in digital signal processing.

o Jpeg C (Encode) and Jpeg D (Decode): These bench-
marks convert one PPM image to jpeg format (Jpeg C)
and vice versa (Jpeg D). The input file is the same
512x512 pixels image in two different formats: PPM for
Jpeg C and jpeg for Jpeg D.

e MatMul: It multiplies two 128x128 matrices. This al-
gorithm is used in image processing and Convolutional
Neural Networks (CNN).

o Qsort: It sorts an array using the quick-sort algorithm im-
plemented in the GNU C standard library. This algorithm
was chosen in order to represent data sorting operations.

o Rijndael E (Encryption) and Rijndael D (Decryption):
These two benchmarks use the Rijndael algorithm as
defined in the Advanced Encryption Standard (AES).
One encrypts an input file (E) and the other decrypts an
encrypted input file (D).

o StringSearch: It searches a word in a sentence.

e Susan C: It uses the corner SUSAN algorithm in order
to find the corners of the features. This algorithm is used
to detect corners in features in an image.

o Susan E: It uses the edge SUSAN algorithm in order to
find the edges of the features.

o Susan S: It uses the SUSAN algorithm in order to remove
noise and preserve the image structure.

It is worth to mention that we use the exact same input
vector, i.e., the same values and same size for each correspond-
ing benchmark in both beam experiments and fault injection.
Further discussion is presented in Section IV-D.

B. Neutron Beam Experiments

Neutron beam experiments are one of the most precise ways
to evaluate devices and applications error rates. Faults are
induced with realistic probabilities and, as the whole chip is
irradiated, faults are not restricted to a subset of accessible
resources like for most software fault-injection frameworks.
Our radiation experiments were performed at the LANSCE
facility of the Los Alamos National Laboratory (LANL) in
Los Alamos, NM.

Figure 2 shows part of our setup at LANSCE. We irradiate
four Xilinx Zedboards with a 2 x 2 inches beam spot, which
is sufficient to irradiate the chip uniformly without affecting
the onboard DDR. This means that data in the DDR is not
expected to be affected by radiation.

During the experiment, the ARM output is compared with
a golden reference which contains the expected output (pre-
computed in a fault free environment). Any mismatch between
the experimental and expected output is marked as an SDC and
logged for later analysis. Additionally, during the execution the
ARM sends an ”Alive” message to a host PC to indicate the
correct function of the application. If after a given period of
time no message is received, an attempt is made to contact
to the board and restart the application. If the attempt is
successful, the event is logged as an Application Crash
(Linux is still running and responding). If no connection with
the board can be establish, the event is logged as a System
Crash, as the operating system has crashed.

LANSCE provides a neutron beam suitable to mimic the at-
mospheric neutron effects in electronic devices. The available
neutron flux was about 3.5 x 10°n/(em?/s), about 8 orders of
magnitude higher than the terrestrial flux (13n/(ecm? x h) at
sea level [18]). Our experiment ran for about 260 effective
beam hours (i.e., not considering setup, initialization, and
recover from crash times), which, when scaled to the natural
exposure, account for more than 2.9 million years. Since
the terrestrial neutron flux is low, in a realistic application



Fig. 2. Radiation test setup at LANSCE.

it is highly unlikely to see more than a single corruption
during program execution. We have carefully designed the
experiments to maintain this property (observed error rates
were lower than 1 error per 1,000 executions). Experimental
data, then, can be scaled to the natural radioactive environment
without introducing artifacts.

Experiments aim to measure the Failures In Time (FIT)
rate of the device executing a code (failures per 10° hours
of operation). FIT depends only on the kind and amount of
resources required for computation, without considering the
code execution time [20].

C. Fault Injection

The microarchitectural modeling is based on Gem5 simula-
tor, a flexible full system cycle-accurate simulator [69]. Gem5
fully supports ARM ISA and comes along with a detailed out-
of-order core implementation. The CPU core was configured
to resemble the microarchitecture of Cortex-A9. Among the
various abstraction models available, microarchitecture level
is the only one that comes with sufficient hardware detail
and is capable of running full-system simulation. While RTL
is certainly more accurate, the limited simulation throughput
does not allow running of multiple fault injection simulations
of a full system stack that includes an operating system and
transactions with I/O peripheral devices.

GeFIN fault injection framework [13] was used on top of
GemS5 for the reliability assessment. In order to replicate the
effects of beaming, GeFIN was configured to inject single-
event transient faults during the simulation of the system.
The faults were injected in six components: L2 Cache, L1
Data and Instruction Caches, Physical Register file, Data
and Instruction Translation Lookaside Buffers (TLB). These
components cover more than 94% of the available memory
cells modeled inside the CPU.

A set of 1,000 single-bit faults was generated for every
component, resulting in 6,000 fault injection simulations per
program. According to [70] formulation on statistical fault
sampling calculation, this corresponds to 4% error margin
with 99% confidence level. This estimation corresponds to

TABLE IV
MIN, MAX, AND AVERAGE ERROR MARGIN FOR EACH COMPONENT
ACROSS WORKLOADS FOR A GIVEN FAULT SAMPLE OF 1,000 FAULTS.

Component Min Err | Max Err | Avg Err
Register File 22 % 33 % 2.9 %
I$ Cache 2.6 % 3.7 % 3.0 %
D$ Cache 2.4 % 4.0 % 3.7 %
L2 Cache 1.7 % 4.0 % 3.7 %
DTLB 3.7 % 4.0 % 4.0 %
ITLB 3.8 % 4.0 % 4.0 %

an initial unknown AVF estimation [12], which, as suggested
by [70], is set to p = 0.5 in order to maximize the fault
sample. After the execution of simulation campaign however
we can re-adjust the p variable in the formula with the result
of the estimation, shifted by the maximum error margin. This
gives us a tighter estimation of the error margin for each
combination of workload/component, which in our results
varies between 1.7% and 4% with 99% confidence. Table IV
shows the error margin range for each component in the fault
injection campaigns.

Microarchitecture level fault injection offers significant
amount of observability, allowing distinction of where exactly
did the fault strike (e.g., whether it was on kernel or user
mode or data, whether the corrupted entry was used or not
etc.) but also detailed information of what was the system
effect. The default fault classification is sufficient to match
the beam experiment fault effect classes, and each fault
injection simulation can be characterized as SDC, System
Crash, Application Crash or Masked, depending on the result
of the simulation. That being said, the vulnerability estimation
of GeFIN can be compared against beam experiments, but
requires a conversion, as the original outcome of a fault
injection campaign is vulnerability estimation [12] rather than
failure rate. Details on how AVF can be attributed to FIT rates
are presented in Section VI.

D. Fault Injection vs. Radiation Experiment

To avoid any difference not related to the reliability evalua-
tion that can bias our results we used exactly the same source
code, compiler, compiler options, and input vector (size and
values) for both fault injection and beam experiments. Still,
the setups used for beam experiments and fault injection are
intrinsically different as we are comparing the execution on
actual hardware vs. Gem5 simulation [71]. To evaluate if the
benchmark execution shows any difference when running in
the setups used for beam experiments and fault injection, we
compare the execution of the same code in the two setups
using 7 different counters: CPU cycles, branch misses, L1 data
cache accesses, L1 data cache misses, L1 data TLB misses,
L1 instruction cache misses, and L1 Instruction TLB misses.
About 70% of the counters report acceptable deviations be-
tween the two setups. The biggest difference is observed in
the L1 Instruction TLB counters. Literature actually identifies
certain design differences that exist in the implementation
of TLB of Gem5 and ARM Cortex microarchitectures that
support these observations [71]. Differences are to be expected



350

SDC
300

AppCrash
250

m SysCrash
200

150
100
50

0

A 3
Q_O%(L ,@(b & Q@QO QQ,QQ\@\@Q Ogo"{& 82’?}((/ b,be}Q 0@‘}\ 600 %,bo((’ &
(¢ » N N - . 2 NS NS NS
© &S @f \;\\Qq * & 9
)

Fig. 3. Beam FIT rates for SDCs, Application Crashes and System Crashes.

as the Gem5 model is not exactly the same as the one
implemented in hardware. The main goal of this paper is
to understand if microarchitectural simulations can provide
accurate insights on the corresponding hardware reliability.

To predict the error rate of a code using fault injection so
to compare it with the one measured with beam experiments
it is necessary to know the raw probability for faults to
occur. In principle, multiplying the raw fault probability of
each microarchitectural resource by its AVF would provide
the realistic error rate of the code executed on the device.
However, measuring the fault probability for each hardware
resource would require too much time and, when dealing with
COTS, could be unfeasible due to visibility limitations. In this
paper, we decide to use the experimentally measured raw fault
rate of a bit in the L1 cache as a reference for the Cortex-
A9 technology fault probability. This simplification is justified
by the fact that caches are normally the most vulnerable
resource in a microprocessor and also the targeted components
in GeFIN are implemented all in the same SRAM technology
as the L1 cache.

V. FAULT INJECTION AND BEAM TESTING DATA

In this Section we present and discuss beam experiment
results and fault injection analysis, highlighting the main
insights on the reliability of the ARM A9 each methodology
provides. In the next Section we will compare the FIT rates
measured with beam experiments and predicted with fault
injection.

A. Beam Experiments Results

Figure 3 shows the FIT rates for the 13 benchmarks tested
at LANSCE following the experimental procedures detailed
in Section IV-B. We report the FIT rate for SDC, Application
Crash, and System Crash. It is worth noting that these three
types of events are uncorrelated and independent, in the sense
that at most one of the three events occurs in one execution
and its occurrence will not affect the probability of errors in
the next executions.

From Figure 3 it is clear that a System Crash is the most
likely event, for all the benchmarks but FFT and Qsort. As

discussed in the following, FFT and Qsort have a higher
Application Crash FIT compared to other benchmarks; their
Application Crash FIT is even higher than their System Crash
rate. As shown in [39], System Crashes have a component
which is intrinsic to the particular hardware platform, only.
Even resilient codes (i.e., with very low SDC or Application
Crash rates), then, could experience a relative high number of
System Crashes. This is the case of CRC32, Rijndael D, and
Rijndael E in Figure 3. The benchmarks with the highest Sys-
tem Crashes FIT are Dijkstra, MatMul, StringSearch, and the
three Susans benchmarks. These are actually the benchmarks
with the smallest input size (please refer to Table III), which is
not even sufficient to fill all caches. Since there is space avail-
able in the caches, the Linux kernel code will not be evicted
when the context is switched to the application. When Linux
is in idle, its data is then exposed and vulnerable to radiation.
An error in the kernel code is likely to lead to a System Crash,
exacerbating the System Crash vulnerability. This is aligned
with previous studies that shown a higher operating system
error rate in the absence of cache conflicts [36].

There is also a significant variation among the Application
Crash FIT of the different benchmarks. The benchmarks with
highest Application Crash rate are MatMul, Qsort, and FFT
while the lowest (about 2 orders of magnitude lower than
MatMul) is CRC32. The codes with the higher Application
Crash FIT are found to be the ones with higher presence of
control-flow operations, higher use of stack for memory or
nested loops. Additionally, these applications are the ones with
non-coherent memory accesses. This requires several accesses
(reads and writes) to the main memory, which is outside the
irradiated chip. To access the main memory it is necessary
to use an interface between the core and the main memory.
It has already been demonstrated that errors during intra-chip
communications are likely to lead to an Application Crash as
an error in the interface or in one of the cores involved in the
communication makes the application to wait indefinitely [39].
We observe as well that while Rijndael has similar Application
Crash FIT rate for both encoding and decoding, for Jpeg C
the coding has a much higher (almost 1 order of magnitude)
Application Crash FIT rate than the decoding. This can be
explained by the fact that in the case of Rijndael the process
to encode and decode is algorithimcally almost identical, but
in Jpeg D the decoding is achieved by doing the reverse
steps from the encoding. This means that the program flow
is different and behaves differently when an error occurs.

For SDC FIT rate, the difference between the lowest
(Dijkstra) and the highest (Qsort) is around 2 orders of
magnitude. This result confirms previous studies showing that
the SDC rate is strongly application dependent [39]. The codes
with lower SDC FIT rate are the three Susans, StringSearch,
MatMul, Dijkstra, and CRC32. These benchmarks either have
a small input (Susans, StringSearch, MatMul) or have long
memory latency (CRC32). Long memory latency, in fact, has
been shown to reduce the error rate of a device as while
waiting for memory transfer the core is in idle state and, thus,
unlike to produce an error [39]. We also observe that for SDC



L1 Instruction Cache L1 Data Cache L2 Cache
100% = == Er EmEEmE R =0 = - N —
80%
60% ] | EnE u || B B
40%
20%
0%
Register File Instruction TLB Data TLB
100% — — O o =
- | | | B B |
oo ERRNNRRRRRRENNETERE RN E
60%
40%
20%
0%
N & - O N0 S T W A £ O W oon N ® - O N0 3 E WA £ 0O W om N O F O N0 S5 Tt w Ao £ 0O W o»
™ 5 L 6 — - © ® 5 L 6 — - © ™ 5 L o — - 9O
O B r 222 ST T S S EE O LU PP2ZET LT T SE EE O wP R LT T S S5 oG
X = n.o.go-o.‘ggmgg e = no_gg-oggmgg X = g_ngo-cggwg%
© e - S £ %3 a a ©° -on S £E% 3 a a ©° -z S S 9 3 3 &
¥ x £ ¥ & £ ¥ ¥ £
» » 7]
Masked =SDC = AppCrash mSysCrash

Fig. 4. Fault injection effects classification for all 13 benchmarks in all 6 components. Effects are Masked, AppCrash, SysCrash, and SDC. The AVF

corresponds to the sum of the three non-Masked cases.

rate for both encoding and decoding of Jpeg and Rijndael
benchmarks have similar FIT SDC rate. This can be explained
noting that, for Rijndael, both encoding and decoding have
equal input size and, for Jpeg, the combination of input and
output have equal size (the input of the encoding and the
output of the decoding have almost identical sizes).

B. Fault injection results using GeFIN

Unlike beam experiments, fault injection campaigns were
executed for each hardware component separately. Figure
4 illustrates the AVF estimation reported by GeFIN. With
fault injection we can also count the faults that were benign
(masked) and the fault was either overwritten or did not affect
the execution in any observable way. Figure 4 presents the
AVF distribution of each fault class, SDC, Application Crash
or System Crash, while the summary of all non-masked cases
expresses the vulnerability of the structure (AVF). Notice that
AVF does not only depend on a structure’s size or organization,
and is aggregately related to the significance of the stored data
to the correct operation of the system.

As one would intuitively expect, the majority of SDC results
(grey areas) are related with the structures that mostly contain
data, which are the L1 Data Cache and L2 Cache. In contrast,
we can see how most of the abnormalities reported by faults in
the L1 Instruction Cache are crashes. Interestingly, we can see
that most of the benchmarks have higher Application Crashes
than System Crashes, with CRC32, Qsort and StringSearch
being the only outliers.

The TLBs are consistently highly vulnerable. The reported
fault injections refer to the Physical page (target) of the tables
as they mostly lead to either incorrect memory translations
or wrong permission flags. Incorrect translations will lead to
use of wrong data in all references of the particular page. In
contrast, the virtual part (tag) has almost zero vulnerability as
corruption in the tag can mainly result to tag misses and thus
invoke unnecessary page walks, which introduces a perfor-
mance penalty. The Register file is involved in both control and

data processing and the vulnerability is evenly distributed in all
classes, without particular trends. However, we can see how
both Rijndael benchmarks report high probability of SDCs,
and this can be attributed to the high level of instruction level
parallelism of the algorithms, which results in high utilization
of the register file for data processing.

Although the AVF measurement is not related only to the
size of a component, the probability that a fault is introduced at
a particular structure (by a particle) is highly related to its size.
Each TLB for instance, has a size of 512 bytes (4,096 bits)
while the L1 Cache memories have a size of 32KB (252,144
bits). Consequently, the probability that a fault will strike the
TLB is only 1/64%" of the Cache’s probability. That being said,
the L2 Cache, which covers more than 80% of the modeled
memory cells of the system, suffers the most by the striking
of faults.

VI. COMPARISON OF FAULT INJECTION AND BEAM DATA

In this Section we compare the FIT rate measured with beam
experiments and predicted with fault injection simulations.

The Architectural Vulnerability Factor expresses the prob-
ability that a fault in a specific hardware structure can result
in a corruption in the execution of a program. The metric is
independent of the components technology or environmental
factors, which are however related to the soft error rate.
There is a direct connection between the failure rate and the
vulnerability of a structure. The soft error rate quantifies how
many faults are introduced in a hardware structure at a given
period of time. As the structures size increases, the error rate is
also increased. If we want to attribute the FIT of a component
to its size, we need to have a per-bit FIT, which is called
raw FIT, or FIT,,,. The FIT of a component can then be
expressed as:

FIT omponent = FIT,q(bit)*Size(bits)« AV F.omponent

The size of each component is known a priori and the AVF
is provided by GeFIN. The only missing attribute is the



60

50
SDC
40 AppCrash
m SysCrash
30
20
10
0 Jv — I- = = = I'1—l| — = = = =,
Vv > (¢] > X
& & < £ Q@qo Ny Orf b,be)((/ &a\o P
N
¢ Q KRN é¢é§°§%o@o%o

Fig. 5. Fault Injection FIT rates for SDCs, Application Crashes and System
Crashes.

one that depends on the technology, which is the FIT, 4.
To have a perfect emulation of the realistic error rate we
would need the F'IT,,,, for all the resources in the processor,
which is unfeasible mainly for COTS devices, as explained
in Section II. We decide to use the L1 cache bit F'IT,,,, as
representative of the Cortex-A9 technology as implemented in
the Xilinx Zynq. We choose L1 cache because it is among the
most vulnerable resources, while at the same time uses the
same SRAM technology with rest of the CPU components.
The L1 cache bit FIT was used as a common baseline for all
the resources in the ARM CPU.

To experimentally measure the FIT,,,, we exposed a
specific benchmark designed to test the L1 data cache. This is
achieved filling byte-by-byte the L1 data cache with a known
pattern and read it after a period of time, comparing the read
values with the pattern. This gives us the FIT rate for the
cache and, diving it by the tested cache size, it gives us the
cache FIT per bit. For the L1 cache, the measured error rate is
2.76210~5 FIT per bit, very close to other publicly available
data for the same technology [72].

Using the FIT,,, we can predict the FIT rate of appli-
cations based on the AVF analysis, as shown in Figure 5. In
order to compare the FIT rate predicted with beam and fault
injection, for each code we divide the highest FIT rate between
the one calculated with beam data and the one predicted
using fault injection by the lowest FIT rate between the two.
Whenever the fault injection FIT rate is higher than the beam
one we represent the value as positive, negative otherwise.

Figure 6 shows the comparison between beam and fault
injection SDC FIT rates for all 13 benchmarks. The positive
values (towards the right) of the horizontal axis indicate how
many times the FIT rate measured with beam experiments is
higher than the FIT rate calculated with fault injection while
negative numbers indicate the opposite (fault injection FIT
rates are higher). For most benchmarks radiation and fault
injection give very close FIT rates (for 10 out of 13 codes
the difference is smaller than 4x, while for 7 of them it is

CRC32
Dijkstra
FFT

Jpeg C
Jpeg D
MatMul
Qsort
Rijndael E
Rijndael D
StringSearch
Susan C
Susan E

-6.24 ——y

=i 8.39
-1.65 F=1r|
-1.55 ]
== 160
177 we]

" 2.81
T 122
-1.06 1
] — 1573
=126

—384

Susan S

f=—i267

-15 -10 -5 0 5 10 15 20 25

Fig. 6.
injection.

SDC FIT comparison between radiation experiments and fault

less than 2x). MatMul, StringSearch, and CRC32 have the
largest difference between the two FIT rate measurements.
However, these benchmarks have very low SDC FIT rate,
for instance, StringSearch has 5.45 SDC FIT on the radiation
experiment and only 0.34 on the fault injection, meaning that
the absolute difference between FIT rates is very small and
such differences are within the statistical error. As expected
from the discussion in Section II, for most of the benchmarks
the FIT rate measured with beam experiment is higher than the
fault injection one. However, we observe that for 5 benchmarks
(Rijndael, Jpeg D, FFT, Dijkstra, and, mainly, MatMul), fault
injection reports a higher SDC FIT rate than beam experi-
ments. As discussed in the following sections, these are also
the benchmarks that show a much higher Application Crash
and System Crash rate for beam experiments compared to fault
injection and this difference implies that some faults propagate
differently to generate SDCs or Crashes in the two setups but
still result in a corruption of the correct execution.

CRC32 |
Dijkstra |
FFT | H 13
Jpeg C | H 20
Jpeg D | 4
MatMul |
Qsort |
Rijndael E Je=—i1
Rijndael D |

=112
H 22

H 119
H 94

StringSearch
SusanC |
Susan E

H 491
=11
H12

SusanS |

12
1 10 100

1000

Fig. 7. Application Crash FIT comparison between radiation experiments and
fault injection.

When comparing the Application Crash FIT rate calculated
with the two setups, as shown in Figure 7, we observe that the
differences between fault injection and beam experiments are
much higher than for SDCs, ranging from 1.5x to almost 500x
(horizontal axis is in logarithmic scale). It is worth noting that
beam experiments FIT is always higher than the fault injection



CRC32 -— 9.1
Dijkstra | 186.7
FFT | 39.8
Jpeg C | 126.4
Jpeg D 61.3
MatMul | 287.1
Qsort | 33.4
Rijndael E | 36.7
Rijndael D | 73.9
StringSearch | 226.3
Susan C | 268.7
SusanE | 228.9
Susan'S | 249.1
1 10 100 1000

Fig. 8. System crash FIT comparison between radiation experiments and fault
injection.

estimation, which is expected since Application Crashes could
be triggered by corruption in logic/control hardware elements
which are difficult to simulate [39]. For three benchmarks,
StringSearch, MatMul, and Qsort, the difference between
beam experiments and fault injection is close or bigger than
two orders of magnitude (while for all others the difference is
smaller than 22x). The reason behind this may be attributed to
differences between the two setups. While fault injection ex-
periments output is downloaded and compared off-line against
the fault-free output to detect SDCs, beam experiments require
an additional routine for on-line SDC checking. As during
beam experiments most executions are error-free, downloading
all outputs would be an unnecessary waste of space and
time. These checks are almost transparent to the workload
characteristics and, to avoid the corruption of SDC details,
they are intentionally designed to hold pointer references
instead of actual data. Application Crashes are mostly sourcing
in abnormalities caused in the program flow (i.e., irregular
branches, wrong memory references, etc.). These have roots
in the executed code of a program (of what is placed in the
.text section of a program). The common property of the 3
workloads with greater differences between fault injection and
beam data (StringSearch, MatMul, and Qsort) is the relatively
small code size, which fits inside the Instruction Cache. As
a result, the code sits in the cache for the whole experiment,
being exposed to neutrons. Additionally, there is enough space
for the SDC check routines to remain in the cache hierarchy,
instead of being evicted during the program execution (as L2
is shared) during the beam experiments. We believe that the
exposure of these routines to the beam (which mainly consist
of pointers) would result in segmentation faults that translate
to Application Crashes. This is inevitable difference between
the two setups could explain the observed behavior for the
three outliers.

The System Crash FIT difference, as shown in Figure §,
does not follow the same behavior of the Application Crash
FIT. We observe a high difference between radiation and fault
injection for all benchmarks, with the radiation FIT being
always higher than the injection. The difference ranges from
about 9 times (CRC32) to about 287 times (MatMul). The

CRC32 Jot1 10.0
Dijkstra | 185
FFT  |m 36
Jpeg C o 5.1
Jpeg D -1.11
MatMul ~ m==17.0
Qsort Jem 65
Rijndael E T3
RijndaelD 1 1.2
StringSearch ] 103.7
Susan C :!-i 8.1
Susan E =i 10.6
Susan S o=t 9.1

-10 10 30 50 70 90 110 130 150

Fig. 9. SDC and Application Crash Comparison between radiation experi-
ments and fault injection.

benchmarks with the largest difference are MatMul, Dijkstra,
StringSearch, and the three Susans. These workloads also
happen to have the smallest inputs. As a result, they actually
leave a large part of the cache hierarchy unused. We believe
that the observed differences can again be induced by differ-
ences on the setups. In fault injection experiments, this portion
remains empty as the caches are reset on every experiment,
while in radiation experiments this space is used by the kernel
for other system operations (e.g. scheduling routines, timer
handlers etc.). The introduction of faults in these regions that
will most likely result to system crashes only in the radiation
experiments. The rest of the benchmarks that use most of the
cache hierarchy do evict the kernel from the caches and do
not suffer from this scenario.

As we have shown in Figures 6, 7, and 8, the magnitude of
the differences between beam experiment and fault injection
FIT rate are application dependent while there exists a clear
trend of larger FIT rates measured by beam experiment
compared to fault injection for all FIT rates (SDC, Appli-
cation Crash, and System Crash FIT rates). As discussed in
Section II, there are various reasons for fault injection and
beam experiments to provide different FIT rates and this is
the reason why they have to be considered complementary
to each other. One very likely reason for the differences and
particularly of the larger number of corruptions in the beam
experiments are the resources that are not modeled in the
simulator. We believe that this high System Crash FIT rate is a
peculiar characteristic of the Xilinx Zynq platform, specifically
the FPGA-ARM interface based on interrupts, which cannot be
further investigate without detailed (proprietary) information.

An indirect way to correlate the results and focus on the
same hardware is by attributing the effects that different
hardware parts cause. While System Crashes, exceptions and
wrong memory accesses can be caused by most of the system’s
components (including CPU cores, peripherals, controllers,
bridges and interconnections), SDCs can only occur at the
components that produce the output, which is the CPU core.
This also partially applies to the majority of Application
Crashes. In Figure 9 we plot the relative difference of the sum
of the FIT rates for SDCs and Application Crashes measured



with beam and fault injection. StringSearch has the highest
relative difference (of about 100x). This is due to the extremely
small number of SDCs observed in both setups, having much
less events observed in the injection than in the radiation setup.
It is also interesting that the MatMul and Qsort, that show a
difference of 100 times in Application Crash FIT (Figure 7),
now have a difference lower than 10 times when comparing
SDC and Application Crash FIT rates (Figure 9). This means
that, the overall FIT rate is only 10x higher in the beam case.
It is likely that some of the Application Crashes observed
in the radiation experiment are observed as SDCs in the
injection. This is probably caused by the corruption of some
hardware resource not modeled in the injection setup. The
other benchmarks are less affected by the code characteristics
discussed previously. For three benchmarks, Jpeg D and the
two Rijndael, the overall FIT difference is very small, from
1.08x up to 1.26x.

Figure 10 shows an aggregate view of our measurements.
It presents the differences between the average FIT rate of
the 13 benchmarks measured with beam experiment and fault
injection compared to the (unknown) real FIT rate of an ARM
Cortex-A9 CPU in the field. As expected and discussed in
Section II, fault injection tends to report smaller device FIT
rates than beam experiments. For SDC rates (leftmost bars)
we can claim that both beam experiments and fault injection
provides, on the average, very similar FIT prediction. It is
reasonable to believe that the real SDC FIT rate of the device
lays between the two values. When Crashes are considered
(especially System Crashes - rightmost bars), the difference
between beam and fault injection increases. As discussed, this
is mainly due to un-modelled structures in fault injection and
to the fact that a full system is massively irradiated with the
beam. However, still the FIT rates including Crashes have a
difference which is smaller or in the worst case equal to an
order of magnitude (in our case the FIT rates difference when
Application Crashes are added to SDCs is only 4.3x while
the total FIT rate when Application and System Crashes are
added to the SDCs - Total FIT in the rightmost bars - is only
10.9x). Again, based on our analysis, we can claim that the real
FIT rate of the evaluated CPU may sit between the FIT rates
values provided by beam experiments and fault injection and
this rather narrow range can drive early informed decisions by
the chip designers about soft error protection techniques for a
particular CPU.

VII. CONCLUSIONS

We presented the first detailed analysis that aims to report
a head-to-head comparison of two very popular reliability
assessment methods: (a) physical accelerated beam test of
an ARM Cortex-A9 CPU and (b) fault injection on the
corresponding model of the ARM Cortex-A9 CPU on the
state-of-the-art microarchitectural simulator Gem5. For an as-
close-as-possible comparison, we maximize the equivalence
of the physical system setup and the simulated system setup:
hardware configuration, application software, and operating
system.

ARM Cortex-A9 — Average FIT Across Benchmarks

FIT SDC-only FIT SDC + AppCrash 316 FIT TOTAL
- N
112 -
H ?
t [
i I ?
i ¥
I |
1 | 29
? | |
25 A i 26 |
she 22 I I
1 [ ! I I
Beam || True Fault i Beam || True Fault Beam | True Fault
o FIT || FIT '"JeF°|f11°" | FIT | FIT '"JeF'ile" FIT || FIT '"JeFCI;[""
O [ L OO
1 1
i i

Fig. 10. Overview of the comparison between beam and fault injection FIT
rates (compare with the motivation of the paper shown in Figure 1). Fault
injection average FIT rate (grey bars) is dominated by the SDC FIT rate
(leftmost bars) and is only slightly increased when the Application Crashes
are added (middle bars) or the System Crashes are also added (rightmost bars).
On the contrary, the Beam FIT rates (purple bars) are increased when the two
types of Crashes are added. However, the SDC FIT rate of Beam is very close
to the Fault Injection SDC FIT rate and also the differences when one or both
types of Crashes are added are close to only one order of magnitude.

The comparison of the two reliability assessment ap-
proaches helps in bounding the range of the expected FIT
rates of a CPU when it is deployed in a final system in
the field. We have shown that for the diverse set of bench-
marks employed in our experiments, the FIT rates differences
between accelerated beam test and microarchitectural fault
injection can be extremely small (when only the SDC FIT rate
is considered) and does not exceed one order of magnitude
when all types of errors (including Application and System
Crashes) are considered for the Total FIT rate of the system.
The insights of our study can assist CPU designers in making
informed decisions about the soft error protection mechanisms
best suited to a particular hardware and software combination.

ACKNOWLEDGMENT

This work is partially funded by the H2020 Framework
Program of the European Union through the UniServer Project,
under Grant Agreement 688540, by the 7th Framework Pro-
gram of the European Union through the CLERECO Project,
under Grant Agreement 611404, by the Coordenao de Aper-
feioamento de Pessoal de Nvel Superior - Brasil (CAPES) -
Finance Code 001, and by the project FAPERGS 17/2551-
0001 202-0.

REFERENCES

[11 R. Lucas, “Top ten exascale research challenges,” in DOE ASCAC
Subcommittee Report, 2014.

[2] J. Dongarra, H. Meuer, and E. Strohmaier, “ISO26262 Standard,” 2015.
[Online]. Available: https://www.iso.org/obp/ui/#iso:std:is0:26262:-1:ed-
1:vl:en

[3] A. Cohen, X. Shen, J. Torrellas, J. Tuck, Y. Zhou, S. Adve, 1. Akturk,
S. Bagchi, R. Balasubramonian, R. Barik, M. Beck, R. Bodik, A. Butt,
L. Ceze, H. Chen, Y. Chen, T. Chilimbi, M. Christodorescu, J. Criswell,
C. Ding, Y. Ding, S. Dwarkadas, E. Elmroth, P. Gibbons, X. Guo,
R. Gupta, G. Heiser, H. Hoffman, J. Huang, H. Hunter, J. Kim, S. King,
J. Larus, C. Liu, S. Lu, B. Lucia, S. Maleki, S. Mazumdar, I. Neamtiu,
K. Pingali, P. Rech, M. Scott, Y. Solihin, D. Song, J. Szefer, D. Tsafrir,
B. Urgaonkar, M. Wolf, Y. Xie, J. Zhao, L. Zhong, and Y. Zhu, “Inter-
disciplinary research challenges in computer systems for the 2020s,”
USA, Tech. Rep., 2018.



[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” International Journal of High Perfor-
mance Computing Applications, pp. 1-45, 2014.

R. R. Lutz, “Analyzing software requirements errors in safety-critical,
embedded systems,” in Requirements Engineering, 1993., Proceedings
of IEEE International Symposium on, Jan 1993, pp. 126-133.

J. C. Laprie, “Dependable computing and fault tolerance : Concepts
and terminology,” in Fault-Tolerant Computing, 1995, Highlights from
Twenty-Five Years., Twenty-Fifth International Symposium on, Jun 1995,
pp. 2-.

M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue
nanometer technologies,” in VLSI Test Symposium, 1999. Proceedings.
17th IEEE, 1999, pp. 86-94.

R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
Test of Computers, vol. 22, no. 3, pp. 258-266, May 2005.

C. Constantinescu, “Impact of deep submicron technology on depend-
ability of vlsi circuits,” in Dependable Systems and Networks, 2002. DSN
2002. Proceedings. International Conference on, 2002, pp. 205-209.
G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K. Iyer,
“An experimental study of soft errors in microprocessors,” IEEE Micro,
vol. 25, no. 6, pp. 30-39, Nov 2005.

B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild:
A large-scale field study,” in SIGMETRICS, 2009.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural Vulnerability
Factors for a High-Performance Microprocessor,” in Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 29—

A. Chatzidimitriou and D. Gizopoulos, “Anatomy of microarchitecture-
level reliability assessment: Throughput and accuracy,” in 2016
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). 1EEE, Apr 2016. [Online]. Available:
https://doi.org/10.1109/ispass.2016.7482075

M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez, “MeRLiN,”
in Proceedings of the 44th Annual International Symposium on
Computer Architecture - ISCA 'l7. ACM Press, 2017. [Online].
Available: https://doi.org/10.1145/3079856.3080225

N. Hemsoth. (2018) Arm it the nnsas new secret weapon. [Online].
Available: https://www.nextplatform.com/2018/11/07/arm-is-the-nnsas-
new-secret-weapon/

NASA, “Phonesat project,”
2016.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec 2001, pp. 3-14.

JEDEC, “Measurement and Reporting of Alpha Particle and Terrestrial
Cosmic Ray-Induced Soft Errors in Semiconductor Devices,” JEDEC
Standard, Tech. Rep. JESD89A, 2006.

N. Mahatme, T. Jagannathan, L. Massengill, B. Bhuva, S.-J. Wen, and
R. Wong, “Comparison of Combinational and Sequential Error Rates
for a Deep Submicron Process,” Nuclear Science, IEEE Transactions
on, vol. 58, no. 6, pp. 2719-2725, 2011.

R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” Device and Materials Reliability, IEEE Transactions on,
vol. 5, no. 3, pp. 305-316, Sept 2005.

J. Noh, V. Correas, S. Lee, J. Jeon, I. Nofal, J. Cerba, H. Belhaddad,
D. Alexandrescu, Y. Lee, and S. Kwon, “Study of neutron soft error
rate (ser) sensitivity: Investigation of upset mechanisms by comparative
simulation of finfet and planar mosfet srams,” Nuclear Science, IEEE
Transactions on, vol. 62, no. 4, pp. 1642-1649, Aug 2015.

V. Sridharan and D. R. Kaeli, “Using hardware vulnerability factors
to enhance avf analysis,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: ACM, 2010, pp. 461-472. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1816023

H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for robust
system design,” in Proceedings of the 50th Annual Design Automation
Conference on - DAC '13. ACM Press, 2013. [Online]. Available:
https://doi.org/10.1145/2463209.2488859

https://www.nasa.gov/content/phonesat/,

[24]

[25]

[26]

(271

[28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

A. Chatzidimitriou, M. Kaliorakis, D. Gizopoulos, M. Iacaruso,
M. Pipponzi, R. Mariani, and S. D. Carlo, “RT level vs.
microarchitecture-level reliability assessment: Case study on ARM(r)
cortex(r)-a9 CPU,” in 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W).
IEEE, Jun 2017. [Online]. Available: https://doi.org/10.1109/dsn-
w.2017.16

G.-H. Asadi et al., “Balancing performance and reliability in the memory
hierarchy,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, 2005, ser. ISPASS ’05.
Washington, DC, USA: IEEE Computer Society, 2005.

J. Suh, M. Annavaram, and M. Dubois, “MACAU: A markov
model for reliability evaluations of caches under single-bit and
multi-bit upsets,” in [EEE International Symposium on High-
Performance Comp Architecture. 1EEE, Feb 2012. [Online]. Available:
https://doi.org/10.1109/hpca.2012.6168940

X. Fu, T. Li, and J. A. B. Fortes, “Sim-soda: A unified framework for
architectural level software reliability analysis.”

N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis
reliability estimates using fault-injection,” ACM SIGARCH Computer
Architecture News, vol. 35, no. 2, p. 460, Jun 2007. [Online]. Available:
https://doi.org/10.1145/1273440.1250719

N. George, C. R. Elks, B. W. Johnson, and J. Lach, “Transient fault
models and AVF estimation revisited,” in 2010 IEEE/IFIP International
Conference on Dependable Systems & Networks (DSN). 1EEE, Jun
2010. [Online]. Available: https://doi.org/10.1109/dsn.2010.5544276

A. Biswas, P. Racunas, J. Emer, and S. Mukherjee, “Computing
accurate AVFs using ACE analysis on performance models: A rebuttal,”
IEEE Computer Architecture Letters, vol. 7, no. 1, pp. 21-24, Jan
2008. [Online]. Available: https://doi.org/10.1109/1-ca.2007.19

A. Lesea, S. Drimer, J. J. Fabula, C. Carmichael, and P. Alfke, “The
rosetta experiment: atmospheric soft error rate testing in differing tech-
nology fpgas,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 317-328, Sept 2005.

V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Guru-
murthi, “Feng shui of supercomputer memory: positional effects in dram
and sram faults,” in Proceedings of SCI3: International Conference

for High Performance Computing, Networking, Storage and Analysis.

ACM, 2013, p. 22.

J. F. Ziegler and H. Puchner, SER-history, Trends and Challenges: A
Guide for Designing with Memory ICs. Cypress, 2010.

N. Seifert, X. Zhu, and L. W. Massengill, “Impact of scaling on soft-
error rates in commercial microprocessors,” Nuclear Science, IEEE
Transactions on, vol. 49, no. 6, pp. 3100-3106, 2002.

H. T. Nguyen, Y. Yagil, N. Seifert, and M. Reitsma, “Chip-level soft
error estimation method,” IEEE Transactions on Device and Materials
Reliability, vol. 5, no. 3, pp. 365-381, Sept 2005.

T. Santini, L. Carro, F. R. Wagner, and P. Rech, “Reliability analysis
of operating systems and software stack for embedded systems,” IEEE
Transactions on Nuclear Science, vol. 63, no. 4, pp. 2225-2232, Aug
2016.

A. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “Analyzing
lockstep dual-core arm cortex-a9 soft error mitigation in freertos
applications,” in Proceedings of the 30th Symposium on Integrated
Circuits and Systems Design: Chip on the Sands, ser. SBCCI ’17.
New York, NY, USA: ACM, 2017, pp. 84-89. [Online]. Available:
http://doi.acm.org/10.1145/3109984.3110008

A. Martinez-Alvarez, F. Restrepo-Calle, S. Cuenca-Asensi, L. M.
Reyneri, A. Lindoso, and L. Entrena, “A hardware-software approach
for on-line soft error mitigation in interrupt-driven applications,” IEEE
Trans. Dependable Sec. Comput., vol. 13, no. 4, pp. 502-508, 2016.
[Online]. Available: https://doi.org/10.1109/TDSC.2014.2382593

V. Fratin, D. Oliveira, C. Lunardi, F. dos Santos, G. Rodrigues, and
P. Rech, “Code-dependent and architecture-dependent reliability behav-
iors,” 06 2018, pp. 13-26.

G. S. Rodrigues and F. L. Kastensmidt, “Soft error analysis at
sequential and parallel applications in ARM cortex-a9 dual-core,” in
2016 17th Latin-American Test Symposium (LATS). 1EEE, Apr 2016.
[Online]. Available: https://doi.org/10.1109/1atw.2016.7483359

F. Rosa, F. Kastensmidt, R. Reis, and L. Ost, “A fast and scalable fault
injection framework to evaluate multi/many-core soft error reliability,”
in 2015 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFTS). 1EEE, Oct 2015.
[Online]. Available: https://doi.org/10.1109/dft.2015.7315164



[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

A. Chatzidimitriou, M. Kaliorakis, S. Tselonis, and D. Gizopoulos,
“Performance-aware reliability assessment of heterogeneous chips,” in
2017 IEEE 35th VLSI Test Symposium (VTS). IEEE, Apr 2017.
[Online]. Available: https://doi.org/10.1109/vts.2017.7928940

X. Tturbe, B. Venu, and E. Ozer, “Soft error vulnerability assessment
of the real-time safety-related ARM cortex-r5 CPU,” in 2016 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). 1EEE, Sep 2016. [Online]. Available:
https://doi.org/10.1109/dft.2016.7684076

J. Blome, S. Mahlke, D. Bradley, and K. Flautner, “A microarchitectural
analysis of soft error propagation in a production-level embedded
microprocessor,” in In Proceedings of the First Workshop on Architecture
Reliability, 2005.

M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-level impact analysis of low-level faults in a modern
microprocessor controller,” IEEE Transactions on Computers,
vol. 60, no. 9, pp. 1260-1273, Sep 2011. [Online]. Available:
https://doi.org/10.1109/tc.2010.60

D. Ferraretto and G. Pravadelli, “Simulation-based fault injection with
QEMU for speeding-up dependability analysis of embedded software,”
Journal of Electronic Testing, vol. 32, no. 1, pp. 43-57, Jan 2016.
[Online]. Available: https://doi.org/10.1007/s10836-015-5555-z

F. de Aguiar Geissler, F. L. Kastensmidt, and J. E. P. Souza, “Soft
error injection methodology based on QEMU software platform,” in
2014 15th Latin American Test Workshop - LATW. 1EEE, Mar 2014.
[Online]. Available: https://doi.org/10.1109/1atw.2014.6841910

A. Holler, G. Macher, T. Rauter, J. Iber, and C. Kreiner, “A virtual
fault injection framework for reliability-aware software development,”
in 2015 IEEE International Conference on Dependable Systems
and Networks Workshops. 1EEE, Jun 2015. [Online]. Available:
https://doi.org/10.1109/dsn-w.2015.16

L. Wanner, S. Elmalaki, L. Lai, P. Gupta, and M. Srivastava,
“VarEMU: An emulation testbed for variability-aware software,” in
2013 International Conference on Hardware/Software Codesign and
System Synthesis (CODESISSS). 1EEE, Sep 2013. [Online]. Available:
https://doi.org/10.1109/codes-isss.2013.6659014

M. Becker, D. Baldin, C. Kuznik, M. M. Joy, T. Xie, and
W. Mueller, “Xemu: An efficient gemu based binary mutation testing
framework for embedded software,” in Proceedings of the Tenth ACM
International Conference on Embedded Software, ser. EMSOFT ’12.
New York, NY, USA: ACM, 2012, pp. 33—42. [Online]. Available:
http://doi.acm.org/10.1145/2380356.2380368

R. Amarnath, S. N. Bhat, P. Munk, and E. Thaden, “A fault
injection approach to evaluate soft-error dependability of system
calls,” in 2018 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). 1EEE, Oct 2018. [Online].
Available: https://doi.org/10.1109/issrew.2018.00-28

H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann,
and O. Spinczyk, “FAIL: An open and versatile fault-injection
framework for the assessment of software-implemented hardware
fault tolerance,” in 2015 11th European Dependable Computing
Conference (EDCC). IEEE, Sep 2015. [Online]. Available:
https://doi.org/10.1109/edcc.2015.28

J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying
the accuracy of high-level fault injection techniques for hardware
faults,” in 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. 1EEE, Jun 2014. [Online].
Available: https://doi.org/10.1109/dsn.2014.2

G. Yalcin, O. S. Unsal, A. Cristal, and M. Valero, “FIMSIM: A fault
injection infrastructure for microarchitectural simulators,” in 2011 IEEE
29th International Conference on Computer Design (ICCD). IEEE, Oct
2011. [Online]. Available: https://doi.org/10.1109/iccd.2011.6081435
M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, N. Foutris, and D. Gi-
zopoulos, “Differential fault injection on microarchitectural simulators,”
in 2015 IEEE International Symposium on Workload Characterization,
Oct 2015, pp. 172-182.

N. Foutris, D. Gizopoulos, J. Kalamatianos, and V. Sridharan,
“Assessing the impact of hard faults in performance components of
modern microprocessors,” in 2013 IEEE 31st International Conference
on Computer Design (ICCD). IEEE, Oct 2013. [Online]. Available:
https://doi.org/10.1109/iccd.2013.6657044

A. Chatzidimitriou, G. Papadimitriou, D. Gizopoulos, S. Ganapathy,
and J. Kalamatianos, “Analysis and characterization of ultra low power

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

branch predictors,” in 2018 IEEE International Conference on Computer
Design (ICCD). IEEE, Oct 2018.

C.-K. Chang, S. Lym, N. Kelly, M. B. Sullivan, and M. Erez, “Hamartia:
A fast and accurate error injection framework,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W). 1EEE, Jun 2018. [Online]. Available:
https://doi.org/10.1109/dsn-w.2018.00046

R. B. Tonetto, G. L. Nazar, and A. C. S. Beck, “Precise
evaluation of the fault sensitivity of OoO superscalar processors,”
in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). 1EEE, Mar 2018. [Online]. Available:

https://doi.org/10.23919/date.2018.8342082

E. Cheng, P. Bose, S. Mitra, S. Mirkhani, L. G. Szafaryn, C.-Y.
Cher, H. Cho, K. Skadron, M. R. Stan, K. Lilja, and J. A. Abraham,
“Clear,” in Proceedings of the 53rd Annual Design Automation
Conference on - DAC '16. ACM Press, 2016. [Online]. Available:
https://doi.org/10.1145/2897937.2897996

V. B. Kleeberger, C. Gimmler-Dumont, C. Weis, A. Herkersdorf,
D. Mueller-Gritschneder, S. R. Nassif, U. Schlichtmann, and N. Wehn,
“A cross-layer technology-based study of how memory errors impact
system resilience,” IEEE Micro, vol. 33, no. 4, pp. 46-55, Jul 2013.
[Online]. Available: https://doi.org/10.1109/mm.2013.67

A. Vallero, A. Savino, G. Politano, S. D. Carlo, A. Chatzidimitriou,
S. Tselonis, M. Kaliorakis, D. Gizopoulos, M. Riera, R. Canal,
A. Gonzalez, M. Kooli, A. Bosio, and G. D. Natale, “Cross-layer
system reliability assessment framework for hardware faults,” in 2016
IEEE International Test Conference (ITC). 1EEE, Nov 2016. [Online].
Available: https://doi.org/10.1109/test.2016.7805863

A. Vallero, A. Savino, A. Chatzidimitriou, M. Kaliorakis, M. Kooli,
M. R. Villanueva, G. D. Natale, A. Bosio, R. Canal, D. Gizopoulos, and
S. D. Carlo, “SyRA: Early system reliability analysis for cross-layer
soft errors resilience in memory arrays of microprocessor systems,”
IEEE Transactions on Computers, pp. 1-1, 2018. [Online]. Available:
https://doi.org/10.1109/tc.2018.2887225

F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
pp. 1-15, 2018.

D. Oliveira, L. Pilla, N. DeBardeleben, S. Blanchard, H. Quinn, I. Koren,
P. Navaux, and P. Rech, “Experimental and analytical study of xeon
phi reliability,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC *17.
New York, NY, USA: ACM, 2017, pp. 28:1-28:12.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec 2001, pp. 3-14.

X. Inc. (2018) Zyng-7000 soc data sheet: Overview. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/data_sheets/ds190-
Zynqg-7000-Overview.pdf

(2018) Linux repository from xilinx.
https://github.com/Xilinx/linux-xInx/tree/xInx_3.14
N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, Aug
2011. [Online]. Available: http://doi.acm.org/10.1145/2024716.2024718
R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
Test in Europe Conference Exhibition, April 2009, pp. 502-506.

A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi,
C. D. Emmons, M. Hayenga, and N. Paver, “Sources of error in
full-system simulation,” in 2014 [EEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). 1EEE, Mar
2014. [Online]. Available: https://doi.org/10.1109/ispass.2014.6844457
J. Baggio, V. Ferlet-Cavrois, H. Duarte, and O. Flament, “Analysis of
proton/neutron SEU sensitivity of commercial SRAMs-application to
the terrestrial environment test method,” IEEE Transactions on Nuclear
Science, vol. 51, no. 6, pp. 3420-3426, Dec. 2004. [Online]. Available:
https://doi.org/10.1109/tns.2004.839135

Available:

[Online].



